ISO: 9001:2015 Certified Institution



Laknepally, Narsampet, Warangal - 506331

(AUTONOMOUS)
Accredited by NBA (UG – CE, EEE, ME, ECE & CSE) & NAAC A+ Grade (Affiliated to JNTUH, Hyderabad and Approved by AICTE, New Delhi) www.bitswgl.ac.in, email: principal@bitswgl.ac.in, Ph: 98660 50044, Fax: 08718-230521

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Subject& Code Electromagnetic Fields & Transmission Lines (22EC416PC)

Course **Academic Year** B. Tech. 2023-24

Year & Semester : II Year & II Sem **Date** 

Exam Mid-1 Regulation R22 : :

**Branch ECE Max Marks** 30

**Duration** 2 hours,

| Q.<br>No | Question                                                                                                                                                                                                                                                           | Marks | Bloom's<br>Taxonomy | CO |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|----|
| 1        | State and explain coulombs law using vector form of coulombs force expression. A charge of $-0.3\mu\text{C}$ is located at A(25,-30,15) and a second charge of $0.5\mu\text{C}$ located at B(-10,8,12). Find the electric Force ( $\vec{F}$ ) at point P(15,20,50) | 5     | Evaluate            | 1  |
| 2        | State and explain gauss law in point form and integral form. Using gauss law derive an expression for electric field intensity due to infinite sheet charge of charge density $\rho_s$ C/ $m^2$ and it is placed at z=0 m                                          | 5     | Analyze             | 1  |
| 3        | Define geometry and capacitance of a capacitor and obtain an expression for capacitance of coaxial capacitor                                                                                                                                                       | 5     | Evaluate            | 1  |
| 4        | Define and explain amperes law in point form and integral form. Find the magnetic field intensity at a point 'P' due to infinite sheet current placed at z=0 m.                                                                                                    | 5     | Understand          | 2  |
| 5        | Derive an expression for magnetic vector potential.                                                                                                                                                                                                                | 5     | Understand          | 2  |
| 6        | Explain inconsistency of amperes law in detail.                                                                                                                                                                                                                    | 5     | Understand          | 3  |