COURSE FILE

ON

AUTOMATA THEORY AND COMPILER DESIGN

CourseCode-22CS427PC
II B.Tech II-SEMESTER
A.Y.:2024-2025

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

1SO 9001:2015 Certified Institution [istd.:2001

@ Balaji Institute of Technology & Science

Laknepally (V), Narsampet (M), Warangal District - 506 331, Telangana State, India
(AUTONOMOUS)
- Accredited by NBA (UG - CE, ME, ECE & CSE) & NAAC A+ Grade
BITS (Affiliated to INT University, Hyderabad and Approved by AICTE, New Delhi)
auTonomous www.bitswglac.in, email: principal@bitswgl.ac.in, Ph:98660 50044, Fax: 08718-230521

DEPARTMENT OF COMPUTER ENGINEERING (SE)

Course File Contents:

Name of the Topic Page No

Cover page

Vision and Mission of the department

PEOs and POs

Syllabus copy and Academic calendar

Brief notes on the importance of the course

Prerequisites if any

Course objectives and course outcomes

CO-PO, CO-PSO mapping and Justification

wn
IR BN RN RV N RIS E
(=]

Class Time table and Individual time table

[a—
S

Method of teaching, Chalk and talk/ppts/NPTEL lectures/cd/innovative
teaching method,etc.

11 Lecture schedule(without faculty name)

12 Detailed notes

13 Additional topics

14 Mid exam question Papers- Theory and quiz

15 University Question papers of previous years

16 Unit-wise quiz questionswith blooms mapping
17 Tutorial problems with blooms mapping

18 Assignment questions with blooms mapping

19 List ofstudents.

20 Scheme and solution of internaltests.

21 Markssheet.

22 Result analysis for internal exams (tests) with respect toCOs-POs
23 Result analysis for external exams (university)
24 CO and PO attainment sheet

25 GATE/competitive exam questions

26 References, Journals, websites and E-links if any

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

ISO 9001:2015 Certilied Institution Tstd.c2001

@ Balaji Institute of Technology & Science

Laknepally (V), Narsampet (M), Warangal District - 506 331, Telangana State, India
(AUTONOMOUS)
— Accredited by NBA (UG - CE, ME, ECE & CSE) & NAAC A+ Grade
BIrTs (Affiliated to JNT University, ITyderabad and Approved by AICTE, New Declhi)

AuToNCoMOoUs www.bitswgl.ac.in, email: principal@bitswgl.ac.in, Ph:98660 50044, Fax: 08718-230521

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI&ML)

DEPARTMENT VISION AND MISSION

VISION

To be a global leader in Artificial Intelligence and Machine Learning research, innovation, and education,
driving transformative advancements that empower industries, enhance human capabilities, and contribute

to a smarter, more sustainable world.
MISSION

M1:Innovative Research& Quality Education — To Conduct research on cutting-edge Technologies to
address complex real-world problems across diverse domains and provide world-class education and

training to equip students with technical expertise, ethical responsibility, and problem-solving skills.
M2: Industry Collaboration & Ethical AI Development —To Foster strong partnerships with industries,
academia, and government organizations to develop impactful Al solutions and promote responsible and

ethical Al practices that align with societal values and global sustainability.

M3: Entrepreneurship & Innovation — Encourage entrepreneurship and the development of Al-driven

start-ups and products that contribute to economic growth.

M4: Community Engagement — Engage with communities to spread Al awareness, inclusivity, and

accessibility for societal benefit.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

ISO 9001:2015 Certilied Institution Tstd.:2001

@ Balaji Institute of Technology & Science

Laknepally (V), Narsampet (M), Warangal District - 506 331, Telangana State, India
(AUTONOMOUS)
Accredited by NBA (UG - CE, ME, ECE & CSE) & NAAC A+ Grade
B TS (Affiliated to JNT University, Hyderabad and Approved by AICTE, New Delhi)
AuTONOMOUs www.bitswgl.ac.in, email: principal@bitswgl.ac.in, Ph:98660 50044, Fax: 08718-230521

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI&ML)

Programs Educational Objectives (PEOs)

PEO1: To equip graduates with a robust foundation in AI, ML, and related computational techniques,
enabling them to develop and implement intelligent systems across multiple domains.

PEQO2: To empower graduates to conduct advanced research, drive innovations in Al and ML, and create
transformative solutions for complex real-world challenges.

PEO3: To prepare the graduates to equip with the skills and adaptability to thrive in dynamic industrial
environments and pursue continuous learning to stay ahead in emerging Al technologies.

Programs Specific Outcomes (PSOs)

PSO1: Graduates will be able to design, develop, and implement Al and ML-based solutions using modern
tools, frameworks, and methodologies.

PSO2: Graduates will be able to analyze, pre-process, and interpret large-scale data, applying statistical and
machine learning techniques to derive meaningful insights and solve real-world problems.

PSO03: Graduates will develop expertise in deep learning, computer vision, natural language processing, and
reinforcement learning to create innovative Al applications across multiple domains.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 4

1SO 9001:2015 Certified Institution Tstd.:2001

@ Balaji Institute of Technology & Science

Laknepally (V), Narsampet (M), Warangal District - 506 331, Telangana State, India
(AUTONOMOUS)
Accredited by NBA (UG - CE, ME, ECE & CSE) & NAAC A+ Grade
B TS (Affiliated to INT University, Hyderabad and Approved by AICTE, New Delhi)
AuToNoMous www.bitswgl.ac.in, email: principal@bitswgl.ac.in, Ph:98660 50044, Fax: 08718-230521

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI&ML)

ROGRAMME OUTCOMES (POs)

A graduate of the Software Engineering Program will demonstrate.
Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.
Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, Natural sciences and engineering sciences.
Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

e Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

e The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

o Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

o Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

o Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

o Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

¢ Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments to manage

projects.

Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

SYLLABUS COPY

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

B.Tech. CSE (Al and ML} Syilabu= RI2-Regulialions
BALAJI INSTITUTE OF TECHNOLOGY AND SCIENCE
(AUTONOMOUS)

F2C5425PC: AUTOMATATHEORY AND COMPILERIDE SIGH

B.Tach. Il Yaar Il Sam.

[E N
e =
[~
(SN]

Prarequislis: Hi
Courss Objeciives
s Tointroduwce the fundamenisl concepts of formal anguages, gammans and aulomata theary.
s To understand delerministic and non-delerministic machines and the differences. batween
decidabiity and undecidabiity.
s Introdsce the majer conospls of bBnguage ranslafon and compiler design and impart e
knowledpe of practical sxils mecessary for constructing a compiler.
i1 Topics include phases of compiler, parsing. syntax directed ranslation, ype chedsing use of
sy tablex, intermediate code generation

Courss Outcomes
1 Able In employ finile state machines for modelng and solving compuling problems.
Able Io design conbest free grammars for formal languapes.
Able In dislinguish betwern decidabilty and ndecidstility.
Demonsiale the knowedpe of paltems, iokens & regulbar expressions for legdical analyss
Acguire skills in using lex ool and design LR parsers

MNAT -1

Introduction to Finite Automata: Sirectural Representations, Aulomata snd Comolesily, the Central
Concepts of Aulomala Theary — Alphabets, Siings. Languages. Problems.

Hondebarminietic Finlte Automats: Formal Definilion, an application, Text Ssarch, Finite Automata
with Eps=ilon-Transitiors.

Determinietic Finlfe automata: Definition of DFA, How A DFA Process Siings. The lenguage of DFA,
Cormeersian af MFA with E-4ransitions io NFA withaowut E-iransiions. Conversion of NFA to DFEA

UMAT - [

Ragquiar Exprasaiona: Finite Automats and Reguiar Expressions, Applications of Reguliar Expressions,
Algebraic Laws for Regulbsr Expression=s. Corversion of Fnite Aulomala o Reguiar Expressions.
Pumping Lemma for Raguiar Languages: Stalement of the pumping lemena, Applications of the
Pumping Lemma.

context-Free Grammars: Definilion of Confext-Fres Grammars, Dervalions Using a Grammar,
Lefrnos=t and Riphlmast Dervalions, the Language of a Grammar, Parse Treses, Ambiguily in Grammars
and Languages.

UNAT - 10

Push Down Automata: Definilion of the Pushdown Aulomalon, the Languages of a POA. Eguivalence
of PO and CFG'E, Acceplance by final stale

Turing Machimes: Intoduction to Turing Machine, Formal Descriplion, Instanianeous descriglion, The
languape of a Turing machine

Undecidabliity: Undecidability, A Languasge that is Mol Recursively Enumeraile, An Undecidable
Profrlern That is RE. Undecid=hle Problems about Turng Machines

UIMAT - I

Introduction: The struciere of & compiier,

Lexlcal Amalysls: The Rolk of the Lesical Analyser, Inpul Buffering, Recognilion of Tokerns, The
Lexical- Analyrer Generator Lex,

Bymtax Analysds: Imroduction, Context-Free Smammars, Writihg a Grammar, Top-Doan Parsing,
Ballam- Up Parsing, Introduction o LR Parsing: Simple LR, More Pawerful LR Parsers

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

B.Tech. C5E (Al and ML) Syllabus RZZ-Regulations

LINIT - W

Syntax-Directed Translation: Syntax-Cirected Defin#tions, Ewaluation Orders for S0D's. Syntax-
Oirected Translation Schemes, lImplementng L-Attribwted SD0s.

Intermediate-Code Generation: Wariants of Syntax Trees, Three-Address Code

Run-Time Enviromments: Stack Allccation of Space, Access to Nonlecal Data on the Stack, Heap
Management

TEXT BOOKS:
1. Inmtroeducton to Automata Theory, Languages, and Computation, 3™ Edition, John E. Hopcroft,
Rajeev Motwani, Jefirey D. Ullman., Pearson Education.
2. Theory of Computer Scéence — Automata languages and computation, Mishra and
Chandrashekaran. 2™ Edition, PHL.

REFERENMCE B{OWOK 5:

1. Compilers: Principles, Techriques and Tools, Alfred W, Aho, Monica 5. Lam, Ravi Sethi, Jeffry
D. Wliman, 2™ Edition, Pearson.

2. Imtroducticn to Formal languages Automata Theory and Computation, Kamala Krthivasan,
Fama F. Pearson.

3. Imtroduction to Languages and The Theory of Computation, fohn C Martin, TMH.

4. lex & yacz— John R. Levine, Tony Mason., Doug Brown, O'reilly Compiler Construction, Kenneth
C. Loewden, Thomson. Course Technology.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

ACADEMIC CALENDER

l\(_l D001 zul‘- Certificd Institution Hstd 2001

i Institute of Technology 8 Science
\ l.nknepally (V). Narsampet (M), Warangal District - S06 331, Telangana State, India

(AUTONOMOUS)

by NBA (UG - CE, EEE, ME. ECE & c-sE) & NAAC A+ Grade
B’rs (Aﬂ‘-hnlcd o INT Unn ersity, Hyderabad and Approved by A New Delhi)
AU www.bitswglac.in, email: pri Aia Lac.in, P soo« Fax: 08718230521

ACADEMIC CALENDAR FOR B.TECH. II-YEAR FOR THE ACADEMIC YEAR 2024-25

B.Tech II-Year —I Semester

Date
S.No Description Duration
From To
1 1¥ Spell of instructions 08-07-2024 11-09-2024 10 Weeks
2 First Mid Term Examinations 12-09-2024 14-09-2024 3 days
3 2™ Spell of Instructions 16-09-2024 05-10-2024 3 Weeks
4 Dussehra Recess 07-10-2024 12-10-2024 1 week
5 i Spell of Instructions continuation 14-10-2024 16-11-2024 5 Weeks
3 Second Mid Term Examinations 18-11-2024 20-11-2024 3 days
PN S Al TR e de Trapcal 21-11-2024 30-11-2024 9 days
Examinations
8 End semester Examinations 02-12-2024 14-12-2024 2 Weeks
B.Tech II-Year —I1 Semester
sE Date .
S.No Description Duration
From To
1 Commencement of IT Semester class work 16-12-2024
) 1st Spell of Instructions 16-12-2024 12-02-2025 9 Weeks
3 First Mid Term Examinations 13-02-2025 15-02-2025 3 days
4 2™ Spell of instructions 17-02-2025 12-04-2025 8 Weeks
5 Second Mid Term Examinations 15-04-2025 17-04-2025 3 days
Gl g seipnration Floliduye antl Bosstiel 18-04-2025 26-04-2025 8 days
Examination
I End Semester Examinations 28-04-2025 10-05-2025 2 Weeks

‘Qw&?s:»

PRINCIPAL /7
Froaapal
Copy to: Balay Insulute of Tech & Science
LARNEPALLY MNarsampet-506 331
1. Dean-Academics
2. All Head of the Departments

3. Examination branch

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

1SO 9001:2015 Certified Institution Tstd.:2001

@ Balaji Institute of Technology & Science

Laknepally (V), Narsampet (M), Warangal District - 506 331, Telangana State, India
(AUTONOMOUS)
Accredited by NBA (UG - CE, ME, ECE & CSE) & NAAC A+ Grade
B TS (Affiliated to INT University, Hyderabad and Approved by AICTE, New Delhi)
AuToNoMous www.bitswgl.ac.in, email: principal@bitswgl.ac.in, Ph:98660 50044, Fax: 08718-230521

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI&ML)

Importance of the course

o An automaton is a construct that possesses all the indispensable features of a digital
computer.
o It accepts input, produces output, may have some temporary storage and can make

decisions in transforming the input into the output.

o A formal language is an abstraction of the general characteristics o programming
languages.
. Aformallanguageconsistsofasetofsymbolsandsomerulesofformationbywhichthese

symbols can be combined into entities called sentences.

PRE-REQUISITES:
Mathematical Logic

Set Theory

Discrete Mathematics

Basic Concepts in Computation

Theory of Languages

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

11

Course Objectives

. To present the theory of finite automata as the first step towards learning advanced
topics such as compiler design.

. To discuss the applications of finite automata towards text processing.

. To develop an understanding of Regular expressions and context free grammars and
how these concepts are used in lexical analyzer

. To develop an understanding of finite automata through Turing machines.

Course Qutcomes

After completing this course the student will be able to:

C213.1 Design finite automata without output like DFA, NFA, €-NFA and finite automata with output like

Moore and mealy machines and also conversions among them like (NFA to DFA). (Synthesis)

(C213.2 Recognize about regular expressions, pumping lemma for regular languages and closure properties

of regular languages. (Knowledge)

C213.3 Define CFG, derivations (Leftmost &Rightmost)and draw parse trees and gain Knowledge on
Ambiguity in Grammars. (Knowledge)

C213.4 Define and design a PDA for a given CFL. Prove the equivalence of CFG and PDA and their inter-

conversions. (Knowledge)

C213.5 Illustrate CFG normal forms, Use pumping lemma to prove that a language is not a CFL

and Define and design TM for a given computation. (Comprehension)

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 12

C213.6 Differentiate between decidability and undecidability ,Generalize Turing Machines into
universal TMs (Analysis)

Mapping of course outcomes with program outcomes:

High-3 Medium-2 Low-1
PO/PSO
/ICO PO1 | PO2 | PO3 | PO4 | POS | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2

C213.1 2 1 2 - - - - - - - - - - -
C213.2 2 - 1 - 1 - - - - - - - 2 -
2133 | 2 | 1 | 2 | - [1 [- - -—1-: - _ 3 2 .
C214.4 2 - - - - - - - - - - - R -
C213.5 2 1 2 - - - - - - - - - - -
C213.6 2 1 - - - - - - - - - - - R

C213 2 1 1.75 - 1 - - - - - - -) -

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

CO-PO /PSO Mapping Justification

Course:Formal Languages and Automata Theory

PROGRAMME OUTCOMES(POs):

PO1 Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of
complex engineering problems.

PO2 Problemanalysis:Identify, formulate,reviewresearchliterature,andanalysecomplex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3 Design/developmentofsolutions:Designsolutionsforcomplexengineeringproblems and
design system components or processes that meet the specified needs with
appropriateconsiderationforthepublichealthandsafety,andthecultural,societal,and
environmentalconsiderations.

PO5 Moderntoolusage:Create,select,andapplyappropriatetechniques, resources,and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PROGRAM SPECIFICOUTCOMES (PSOs):

PSO1 Professional Skills: The ability to implementcomputer programs of varying complexity
In the areas related to web design, cloud computing and networking.

C213.1 DesignfiniteautomatawithoutoutputlikeDFA, NFA,€-NF Aandfiniteautomata

WithOutputlikeMooreandmealymachinesandalso conversionsamongthemlike (NFA
to DFA). (Synthesis)

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

14

Justification
PO1 | Gainknowledgeonfinite automata.(level2)
PO2 | Analyseproblemandaccordinglyconstructfiniteautomata.(levell)

PO3 | Designsolutionsforengineeringproblemsanddesignsystemcomponentsusingfinite
automata.(level2)

C213.2Recognizeaboutregularexpressions,pumpinglemmaforregularlanguagesand Closure
properties of regular languages. (Knowledge)

Justification
PO1 | Gainknowledgeonregularexpressions.(level2)
PO3 | Useregularexpressionsconceptinpatternmatching.(levell)
POS | Tocreatelexprogramsuseregular expressions.(levell)
PSO1 | InWebdesigning,fortextsearchinguseregularexpressions.(level2)

C213.3DefineCFG,derivations(Leftmost &Rightmost)anddrawparsetreesandgain Knowledge
on Ambiguity in Grammars. (Knowledge)

Justification

PO1 | GainknowledgeonCFG,derivationsandparsetrees(level2)

PO2 | AnalyseproblemandaccordinglyconstructCFG. (levell)

PO3 | UseCFGindesignofparsersincompilerdesignandXML.(level2)

PO5 | TocreateY ACC(parsers) useCFG.(levell)

PSO1 | Incompiler design(Parsers),webdesigning(XML,DTD)useCFG.(level2)

C213.4Define and designa PDA for a givenCFL. Prove the equivalence of CFG and PDAand
their inter-conversions. (Knowledge).

Justification
PO1 | Gainknowledge onpushdownautomata(level2)

C213.5 [llustrateCFGnormalforms,Usepumping lemmatoprovethatalanguageis notaCFL
and Define and design TM fora given computation. (Comprehension)

Justification

PO1 | Gain knowledge on CFG normal formsand Turing machines.(level2)
PO2 | Analyse problem and accordingly construct Turing machine(levell)
PO3 | Design solutions for engineering problems usingTuring machine(level2)

C213.6 Differentiate between decidability and undesirability, GeneralizeTuring
Machinesintouniversal TMs(Analysis)

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 15

Justification

PO1 | Gainknowledgeondecidability,undecidability, universalTMandpost correspondence
problem(level2)

PO2 | Analyseproblemandsolveit.(levell)

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

CLASS TIME TABLE

Gy =

BITS

RN LI

oo lritssw oo i, el :

:I. Institute of Technology

Laknepally (W), Marsamper (M), Warangal Disirict -
‘\l MWONONMNOLIS)

L] =

v. Hyderabad and Approved by ATCTE

principalioebitsywzlac.in., Pho9R36o0 SO0 $3. Fax: 087 1H-230521

8 Science

506 331, Telangana Seate, Tndia

ME, ECE & CSE) & MAAC A+ Grade

Blew Drelhi)

Dept. of Computer Engineering (SE)
CLASS TIME TABLE
ALY, 2024-25 (11 Sem) Reg (R22)

Class: B.Tech I CSW

w.ef. 16.12.2024

ErE 1 2 3 |] 1:00-1:40 5 6 Z
9:30-10:20 | 10:20- 11:10 | 11:20-12:10 | 12:10-01:00 1:40 - 02:30 2:30 - 03:20 3:20 - 04:10

MON SE FLAT e e o : 05 BEFA DM
TUE FLAT SELAB 2 SE DM BEFA
WED CRT -VERBAL ABILITY BEFA FLAT e 05 LAB
THU SE 03 FLAT BEFA ﬁ DM 05 COUNSELLING
FRI 05 FLAT SE DM _i NODE JS LAB
SAT BEFA CRT - TECHNICAL LAB B CRI-THEORY LIBRARYISPORTS
SUBJECTS: LABS:

Discrete Mathematics (DA) - Dr.A.Srinivas

Business Economics& Financial Analvsis (BEFA) - Mr.B.Kartheek
Operating Svstems (03) - Mr.Bejjam Amnil

Formal Languages and Automata Theory (FLAT) : Mr.Murali chirra

Software Engineering (SE) :Prashanth Vallaboju

Constitution of India (C.I) : Mr.M.Adinarayana

Operating Svstems Lab : Mr.Bejjam Amnil

Software Engineering Lab :Prashanth Vallaboju,Dumpala suman
Node Js Lab : Mr M. Amarnath

RealTimeResearch Project Lab :Choppadandi Rahulteja Mahesh Up
CRT /SDP:

Technical-Theory &Lab : Mr.D.Venu

Venue: T&P Lab

Verbal Ability : Mr. N MahaTeja

Venue: Main Seminar Hall

Time Table Co-ordinator Head, Dept. of CE(SE) Dean-Academics Principal
Personal time table
Mrs.M.Vedavani
TOTAL-14
DAY 1 2 3 4 5 6 7
9:30-10:20({10:20-11:10 11:20 - 12:10 - 01:00| LUNCHBR | 1:40 - 02:30 |2:30 - 03:20|3:20 - 04:10
12:10 EA
MON 1ICSM-
ATCD
TUE IIICSM-ML LAB
WED | ICSM-ATCD
THU
IIICSM-CN LAB 1ICSM-
FRI ATCDF
SAT |[[CSW-ATCD IICSM-DS LAB
Deptof CSE(AI&ML) Balaji Institute of Technology &Science 17

ISO 9001:2015 Certilied Insti Estd.:2001

@ Balaji Institute of Technology & Science

Laknepally (V), Narsampet (M), Warangal District - 506 331, Telangana State, India
(AUTONOMOUS)
Accredited by NBA (UG - CE, ME, ECE & CSE) & NAAC A+ Grade
By TS (Affiliated to JNT University, Hyderabad and Approved by AICTE, New Delhi)
AuTOoNOMous www.bitswgl.ac.in, email: principal@bitswgl.ac.in, Ph:98660 50044, Fax: 08718-230521

DEPARTMENT OF COMPUTER ENGINEERING (SE)

Method of teaching, Chalk and talk/ppts/NPTEL lectures/cd/innovative teaching method, etc.

1. Chalk and Talk (Traditional Method)

e Pros: Simple, direct interaction with students, flexible for impromptu explanations, and
allows for personalization of teaching pace.
o How to Improve It for Flat Subjects:

o Use Visuals: Draw diagrams and flowcharts to illustrate concepts like state diagrams
for automata, parsing trees for grammars, etc.

o Relate to Real-World Applications: Try to link abstract concepts to real-life
examples or simple computing problems, such as search engines (regular expressions)
or programming language compilers (context-free grammars).

o Interactive Discussions: Engage students by asking questions or encouraging them
to explain concepts as they are learning.

2. PowerPoint Presentations (PPTs)

e Pros: Can include diagrams, bullet points, videos, and other visuals that make abstract
concepts clearer.
e How to Improve It:
o Clear Visuals: Use animations to show how automata change states, or how a string
is parsed by a context-free grammar.
o Step-by-Step Breakdown: Break complex problems into simple steps. For instance,
show the process of evaluating a regular expression using a DFA or constructing a
CFG.
o Interactive Slides: Include quiz questions or polls during the presentation to check
comprehension (e.g., "What happens when this NFA receives input X?").

3. NPTEL (National Programme on Technology Enhanced Learning) Lectures

e Pros: High-quality, well-structured content from experts in the field. Self-paced learning is
possible.
e How to Improve It:
o Flipped Classroom Approach: Assign NPTEL lectures as homework and then
spend class time discussing the most challenging concepts from those lectures.
o Active Discussion After Viewing: After watching NPTEL videos, have an in-class
discussion or Q&A session to clear doubts.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 18

o Supplementary Exercises: Use practice problems, coding exercises, or simulation
tools related to the NPTEL content to enhance learning.

4. Innovative Teaching Methods

e Gamification: Create challenges or games that involve solving automata problems or
language problems. For example, students could "race" against time to design a DFA or
NFA for a given language.

o Hands-on Software Tools:

o JFLAP: A great tool for simulating automata, Turing machines, and grammars.
Have students experiment with designing automata or proving languages are regular
or context-free using JFLAP.

o Automata-based Programming: Use coding assignments where students
implement automata algorithms or grammars in their favorite programming language
(e.g., writing a program to simulate a DFA or NFA).

e Role Play: For complex concepts, have students "become" the automata, grammars, or
machines, physically walking through transitions to help visualize concepts like state
changes in a DFA or parsing a string using a CFG.

o Concept Maps: Encourage students to create mind maps or concept maps for topics like
finite automata, regular expressions, context-free grammars, etc., which show the
connections between different concepts.

5. Flipped Classroom

o How It Works: The idea is that students learn the basic concepts outside of class (via
readings, videos, or online resources like NPTEL), and class time is used for active
problem-solving and discussions.

e« How to Apply:

o Provide short introductory videos or readings on the topic of the day.

o In class, engage students in solving problems related to the topic, discuss real-world
applications, and troubleshoot any confusions.

o Incorporate peer discussions and group work to help students collaborate on complex
problems.

6. Interactive Online Learning Platforms

e Tools: Platforms like Khan Academy, Coursera, Udacity, or edX can provide online
resources, interactive exercises, and quizzes that allow students to learn at their own pace.

o Benefits: Students can revisit tough topics, complete interactive quizzes, and engage with a
variety of resources such as animations, simulations, and hands-on coding exercises.

7. Project-Based Learning

e Approach: Assign a project that requires students to apply what they've learned to real-
world problems, such as creating a simple compiler or developing a software tool that
recognizes regular languages or simulates a Turing machine.

e How to Implement:

o Divide students into teams and assign them a problem or project that involves
multiple concepts (e.g., developing a finite automaton to recognize a specific
language).

Provide periodic feedback and encourage collaboration.
Have students present their projects at the end of the semester, explaining their
approach and solutions.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 19

8. Collaborative Learning (Peer Learning)

e Group Work: Organize students into groups to discuss difficult topics (e.g., design an
automaton for a particular language or prove a language is context-free).

e Peer Teaching: Encourage students who grasp concepts faster to explain them to their peers
in simple terms.

e Study Groups: Organize informal study groups where students can work together to solve
problems, learn from each other, and get support from the teacher when necessary.

9. Use of Animation/Visualization Tools

e Simulations of Automata: Tools like JFLAP or web-based simulators can show state
transitions in real-time, which helps students visualize the concepts they are learning.

e Automata in Action: Use animations or video clips that demonstrate how finite state
machines process input strings, or how context-free grammars generate languages.

10. Incorporating Coding
e Code along: Students can write code to implement finite automata, Turing machines, or
parsers in various programming languages (e.g., Python, Java, or C++).

e Project Examples: Have them write simple regex parsers, or create a language recognizer
using finite automata, to give practical exposure to theoretical concepts.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 20

LESSON PLAN

1SO 9001:2015 Certified Insti:t_xtion . - Estd. : 2001
{; Balaji Institute of Technology & Science

Laknepally, NARSAMPET, Warangal (Rural) — 506331

= Accredited By NBA (UG - CE, ME, ECE & CSE Programmes) & NAAC
B ’TS (Affiliated to JNTUH, Hyderabad and Approved by the AICTE, New Delhi)

narsameer WWW.bitswgl.ac.in, email: principal@bitswgl.ac.in :: Ph. 98660 50044, Fax 08718-230521

Department of Computer Science & Engineering
LESSON PLAN & DELIVERY REPORT
Subject: AUTOMATA THEORY AND COMPILER DESIGN [CS305PC]J Class: B.Tech Il CSM

Regulation: R22
Academic Year: 2024-25 (lI-Sem) Commencement of Class Work: 16-12-24

UNIT I Introduction to Finite Automata, DFA,NFA (No. of Lectures —12)
Topics Topic
(as per Sub Topics L;Ct' Scl;;edtuled Delivered
syllabus) 0 ate Date
e About Subject & Guidelines
e Vision, Mission, CO’s of subject L1 19.12.24
e Text & Reference Books
e Introduction to Finite Automata: L2 20.12.24
Intrc.)d.uc‘uon e Automata and Complexity L3 23.12.24
to Finite
Automata e Central Concepts of Automata 14
Theory — Alphabets
N2A 1103 DA
e Strings, Languages, Problems L5 27.12.24
e Nondeterministic Finite Automata L6 30.12.24
Nondetermin - S—
istic Finite e Formal Definition, an application, L7 31.12.24
Automata Text Search
e F inite.Automata with Epsilon- L8 02.01.25
Transitions
e Definition Qf DFA, How A DFA Lo 03.01.25
Process Strings,
Deterministic | ® The language of DFA, Conversion
Finite of NFA with €-transitions to NFA L10 06.01.25
Automata without €-transitions o
e Conversion of NFA to DFA L11 07.01.25
Test e Slip Test L12 08.01.25

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

21

Topics Lect Topic
(as per Sub Topics No.. 09.01.25 Delivered
syllabus)) Date
UNIT II: RE, Pumping Lemma for Regular Languages, Context-Free Grammars (No. of
Lectures — 12)
e Finite Aptomata and Regular L13 17.01.25
Expressions
. Apphca@ons of Regular L14 20.01.25
Regular Expressions
Expressions)
. Algebra.lc Laws for Regular L15 21.01.25
Expressions
e Conversion of F1‘n1te Automata to L16 22.01.25
Regular Expressions
Pumping e Statement of the pumping lemma L17 23.01.25
Lemma for
Regular e Applications of the Pumping L18 27.01.25
Languages Lemma
¢ Definition of Context-Free L19 78.01.25
Grammars
e Derivations Using a Grammar,
Leftmost and Rightmost | L20 29.01.25
Derivations
Context-Free
Grammars e The Language of a Grammar L21 30.01.25
e Parse Trees L22 31.01.25
e Ambiguity in Grammars and 123 03.02.25
Languages
Test o Slip Test L24 04.02.25
UNIT - 1IT PDA, TM, Undecidability: (No. of Lectures — 12)
e Push Down Automata: Definition of | L25 06.02.25
the Pushdown Automaton, T
Push Down
e the Languages of a PDA,
Automata Equivalence of PDA and CFG*s L.26 07.02.25
e Acceptance by final state L27 08.02.25
¢ Introduction to Turing Machine, | L28 10.02.25
. Formal Description
Turing
Machines
e Instantaneous description L29 11.02.25
Mid I Schedule: ATCD Mid I Exam

Deptof CSE(AI&ML)

Balaji Institute of Technology &Science

Turing . . Mid I Exam
Machines: e The language of a Turing machine L30 (ATCD) :
;Jnde’c‘dablht e Undecidability 131 | 18.02.25
Mid I e Marks Distribution
Marks e Discussion about Paper 132 19.02.25
Distribution | ° Counsel the students (AB/got poor
marks)
o gnlaarlrrllégrl;%%: that is Not Recursively 133 21.02.25
Undecidabilit |3 An Undecidable Problem That is 134 24.00.05
y RE, U2,
. Undemdable Problems about L35 25.00.05
Turing Machines
e Slip Test L36 27.02.25
. Topic
;l;;pl:z Sub Topics Lect. Scheduled Delivered
sylla{))us) P No. Date Date
UNIT -1V~ Compiler , Lexical Analysis , Parsing Techniques: (No. of Lectures — 11)
e Introduction: The structure of a
compiler, L37 |04.03.25
e Lexical Analysis: The Role of the
Lexical Analyzer L38 | 05.03.25
Lexical i L39
Analysis e Input Buffering 06.03.25
e Recognition of Tokens L40 | 07.03.25
e The Lexical- Analyzer Generator 141 | 10.03.25
Lex,
Svntax e Introduction, Context-Free
Af;lysis Grammars, L42 | 12.03.25
e Top-Down Parsing, L43 | 14.03.25
Syntax e Bottom- Up Parsing, L44 | 17.03.25
Analysis e Introduction to LR Parsing: Simple
18.03.25
LR L45
e More Powerful LR Parsers L46 | 19.03.25

Deptof CSE(AI&ML)

Balaji Institute of Technology &Science

23

e Slip Test L47 | 04.03.25

UNIT -V Syntax-Directed Translation, Intermediate-Code Generation ,Run-Time

Environments
(No. of Lectures — 11)
e Syntax-Directed Definitions L48 | 20.03.25
e Evaluation Orders for SDD's L49 | 21.03.25
. Sy}ritax— Directed Translation 150 | 24.03.95
Syntax- chemes
Directed) .
Translation e Implementing L-Attributed SDD's. L51 |25.03.25
¢ Intermediate-Code Generation:
Variants of Syntax Trees, L52 1260325
o Three-.Address.Code 153 | 27.03.25
e Run-Time Environments:
e Stack Allocation of Space L54 | 28.03.25
e Access to Nonlocal Data on the
Run-Time Stack L35 | 02.04.25
Environment
S e Heap Management L56 | 03.04.25
o Slip test L57 | 04.04.25
e Marks Distribution
¢ Discussion about Paper
e Counsel the students (AB/got poor L58 | 07.04.25
marks)
Mid II Schedule: ATCD Mid IT Exam
Faculty HOD
LECTURE NOTES

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 24

UNIT-1

After going through this chapter, you should be able to unaerstana :

o Alphabets, Strings and Languages
» Mathematical Induction

o Finite Automata

« Equivalence of NFAand DFA

o NFAwith ¢ - moves
1.1 ALPHABETS, STRINGS & LANGUAGES
Alphabet
Analphabet, denoted by 5 ,isa finite and nonempty set of symbols.

Example:
1. If 3 is an alphabet containing all the 26 characters used in English language, then

y. is finite and nonempty set,and Z = {a, b,c,, z}.
2. X ={0,1} isanalphabet.
. ¥ ={1,2,3,.} isnotanalphabetbecauseitisinfinite.
4, 7 ={} isnotanalphabet because it is empty.

String
A string is a finite sequence of symbols from some alphabet.
Example :

"xyz" isastring over an alphabet I = {a,b,¢,..., 2} . Theempty stringor null string is
denoted by ¢.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 25

Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
string w = abe ,then a,ab abc are prefixes of w.

Suffix of a string

A string obtained by removing zero or more leading symbols is called suffix. For example, ifa
String w = abc ,then ¢, bc,abe are suffixesof w.
Asstring a is a proper prefix or suffix of a string w ifandonlyif g # w .

Substrings of a string

A string obtained by removing a prefix and a suffix from string y is called substring of w . For
example, ifastring w = ghe ,then p isasubstring of . Every prefix and suffix of string w is
asubstring of w , but not every substring of yy is a prefix or suffix of w . Forevery string w, both

w and ¢ are prefixes, suffixes, and substrings of w.
Substring of w =w - (one prefix)~-(one suffix).

Language

A Language L over 3, is a subset of ', i. e, it is a collection of strings over the
alphabet 5. ¢ ,and {e} are languages. The language ¢ is undefined as similar to infinity and
{¢} issimilar to an empty box i.e. a language without any string,

Example:

1. L, ={01,0011,000111 } isalanguage over alphabet {0,1}
2. L,={e,0,00,000,..} isalanguageoveralphabet {0}
3. L, ={0""2" :n>1} isalanguage.

Kleene Closure of a Language

Let 7 bealanguage over some alphabet 3 . Then Kleene closure of 7, is denoted by 7, * and
itis also known as reflexive transitive closure, and defined as follows :

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 26

L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two,}

-UeH=rululu..

K=0
Example:

1. Z={a,b} andalanguage 7 over y.Then
F=rullulu...
L= {g
L' = {a,b},

I* = {aa,ab,ba,bb} and soon.
So, L*={e,a,b,aa,ab,ba,bb..}
2. § ={0}, then §* = {&,0,00,000 ,0000 ,00000 ,....}

Positive Closure

If y isan alphabet then positive closure of 5 is denoted by 5+ and defined as follows :
£t = 3" - (g = {Set of all words over ¥ excluding emply string €}
Example :
if £ = {0},then £* = {0,00,000 ,0000 ,00000 ..}

1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning, This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthestarting point for aninduction. Here, prove that the result s true for somen=0or 1.
Induction Hypothesis : Here, assume that the result is true forn =k .
Induction step : Prove that the result is true for somen=k+ 1.

Proof of induction step : Actual proof.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

27

1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a finite - nonempty set of states, an
input alphabet, aread - only head , a transition function which defines the change of configuration,
aninitial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure 1.1.

Y § j+— Input Tape

1\-—-— Reading Head

Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape is divided into cells and each cell contains one symbol from the input alphabet.
The symbol "' is used at the lefimost cell and the symbol ‘§'is used at the rightmost cell to

indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration, The head can read either from left - to- right or

right - to -left one cell at a time. The head can't write and can't move backward. So, FA can't
remember its previous read symbols, This is the major limitation of FA.

Deterministic Finite Automata (DFA)

A deterministic finite automata M can be described by 5- tuple (Q, Z, 8, g, F) , where

1. Qis finite, nonempty set of states,

2.y isaninputalphabet,

3. 5 istransition function whichmaps Q xE — Q i.¢, thehead reads asymbolin ts present
state and moves into next state.

4. q, €Q,knownasinitial state

5. FcQ,knownassetof final states.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 28

Non - deterministic Finite Automata (NFA)

A non - deterministic finite automata M can be described by 5 - tuple (Q, £, 8, q,, F), where

1

2.
3.

4.
3.

Qis finite, nonempty set of states,

3, isaninput alphabet,

$ is transition function whichmaps Q x £ 2° i.e., the head reads a symbol inits present
state and moves into the set of next state (s) . 22 is power setof Q,

q, €Q, known asinitial state , and

F c Q, known as set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
avalid input symbol.

States of the FA

FAhas following states :

I. Initial state : Initial state is anunique state ; from this state the processing starts.

Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

Non - final states : All states except final states are known as non - final states.

Hang - states : These are the states, which are not included into Q, and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are generally

denoted by ¢ . For example, consider a FA shown in figurel 2.

FIGURE 1.2 : Finite Automata

g, istheinitial state, q,, g, are final states, and ¢ is the hang state.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

29

Notations used for representing FA

We represent a FA by describing all the five - terms (Q, Z, §, g, F). By using diagram to

represent FA make things much clearer and readable. We use following notations for representing
the FA:

I. Theinitial state is represented by a state within a circle and an arrow entering into circle as
shown below :
(nitial state g,)

2, Final state is represented by final state within double circles :

(Final state g,)

3. Thehang state is represented by the symbol '¢' within a circle as follows:

4, Other states are represented by the state name within a circle.
5. Adirected edge with label shows the transition (or move). Suppose p is the present state
and q is the next state on input - symbol 'a', then this is represented by

6. A directed edge with more than one label shows the transitions (or moves). Suppose p is the
present state and q is the next state on input - symbols 'a," or ‘a," or...or 'a," thenthisis

represented by (P)— =t 9

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function

Direct /\ Indirect

(Represented by §) (Represented by §')

Direct transition Function (5)

When the input is a symbol, transition function is known as direct transition function.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

30

Example : §(p,a) = q (Where p s present state and q is the next state).
Itisalso known as one step transition.

Indirect transition function (5')
When the input is a string, then transition function is known as indirect transition function.
Example : &'(p,w)=¢q, where p is the present state and q is the next state after | w |

transitions. It is also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifd(p,a)=q,then d (p, ax)=3(q x) andif §' (p, X) = q,then &' (p, xa) =8'(q, a)
2. Fortwostringsxandy; d(p,xy) =6(8(p,x),y) ,and 6'(p.xy) =6'(6'(p.x),y)
Example :1. ADFA M =({g,,4,,9,.9,},{0,1},6,9,.{q,}) isshowninfigurel.3.

FIGURE 1.3 : Deterministic finite automata

Where § is defined as follows :
0 1
= G G Q.
q, G Qs
g, G %
o G, G

2. ANFAM! =({Qos‘hrqz’Q',r}:{“sl}u5'qu-{qj}) lsshownmﬁgumlfl

0,1

()

FIGURE 1.4 : Non - deterministic finite automata

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

3. Transition sequence for the string "011011" is as follows :

One execution ends in hang state ¢ , second ends in non - final state g, , and third ends in final
state ¢, hence string "011011" is accepted by third execution.

Difference between DFA and NFA
Strictly speaking the difference between DFA and NFA lies only in the definition of §. Using this
difference some more points can be derived and can be written as shown :

DFA NFA
1. The DFAis 5 - tuple or quintuple The NFA is same as DFA except in the
M =(0,%,8,q,,F) where definition of §. Here, § is defined as follows::
Qs set of finite states §:0x(XUe) tosubset of ¢
v, is set of input alphabets
§:0xZto Q

g, istheinitial state
Fc Q issetof final states

2. There can be zero or oné transition | There can be zero, one or more transitions

from a state on an input symbol from a state on an input symbol

3, No e- transitions existi.e., there < - transitions can exist i. e., without any input
should not be any transition ora there can be transition from one state to
transitionifexistitshouldbeonan | another state.
input symbol

4, Difficult to construct Easy to construct

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 32

The NFA accepts strings a, ab, abbb etc. by using e path between g, and g, we can move
from g, state to g, without readingany input symbol. To accept b first we are moving from g,

to g, reading aand we canjumpto g, state without reading any symbol there we accept band
we are ending with final state so it is accepted.

Equivalence of NFA with ¢ Transitions and NFA without ¢ - Transitions

Theorem :Ifthe language L is accepted by an NFAwith - transitions, then the language L,
is accepted by an NFAwithout e~ transitions.

Proof : Consider an NFA 'N'with e - transitions where N =(Q, Z, 8, ¢,, F)
Constructan NFA N, without - transitions N, =(Q,, Z, 3, g, FY)
where 0, =0 and

P Fuy {qa} if €~ closure(g,) contains a stateof F
v otherwise

and 8, (¢,a) is 3 (g,a) forqinQandain 5.

Consideranon - empty string . To show by induction || that 5, (g,,) = & (g,,0)
For o =¢, the above statement is not true, Because
81(90,€)={q0} >

while 8(g,,€)=€ ~closure (g,)

Basis :

Start induction with string length one .

i.¢, lo|=1

Then wisasymbol a, and 51(qg,a)=3(qﬂ,a) by definition of 3,.
Induction : lo|>1
Let ® = xy forsymbolain .
Then 51(90,¥)=81(8,(q05))

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

33

Calculation of « -closure :

&~ closure of state (e-closure (q)) defined as it is a set of all vertices p such that there is a
path fromqtop labelled ¢ (including itself).

Example :
Consider the NFA with e - moves

RO OSROR

e~ closure (¢,)= { 4o, 1 95> 4; }
e~ closure (¢,)={ 4,,9,, 4, }
e~ closure (¢,)={g,, ¢, }

e~ closure (g,)= {g, }

Procedure to convert NFA with - moves to NFA without - moves

Let N=(Q, £,8,g,, F) isaNFAwith e movesthenthereexists N'=(0,¢,8 ,q,,F") without
e MOoves

1. Firstfind - closure of all states in the design.

2. Calculate extended transition function using following conversion formulae.
0 §(g, x)=e- closure (35 (g,), x))
@ &(q,e)=e - closure(q)

3. F'isasetofall states whose e closure contains a final state in F.

Example 1 : Convert following NFAwith & moves to NFAwithout moves.

=0

Solution : Transition table for given NFAis

b a b
w'} qa QI
q, b ¢ 4,

0 % b

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

34

() Finding < closure :
e —closure (g,) = {4}
e- closure (¢,) = {g,, 4.}
e~ closure (g,) = {¢,}

(ii) Extended Transition function :
5 a b

>4, {41,9:} ¢

¢ {g,}
o {9,}

5 (g, @) = —closure (& (J{qu.e),a))

= e—closure (& (e—closure (q,) , a))
= e—closure (6 (g,, a))

= e—closure (q,)

={q1,92}

8 (gy» b) =€ —closure (5(5(qq,€)b))
=e— closure(8(e~ closure (g,), b))
=g~ closure(d (q,, b))

=e~— closure(¢)

=0

8 (g,, a) =€- cfosure(ﬁ(s (g,, €), a))
=e~ closure(d (e- closure(q,), a))
=€~ closure(d (g, 4,)» @)
=e— closure(d (g,, a) wb(q,, a))
=g- closure (¢)

=9

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

35

(iii)

(iv)

5 (g,, b) = €— closure (8 {5 (q,, ©), b))
= €— closure (8 (€ closure(g,), b))
= €~ closure (8 ((q,,q,), b))
= €— closure (5 (gq,,b) U (q,, b))
= €= closure (g,)

={q,}

8 (q,,a) = €— closure (G(S(qz, €), a))
= €~ closure (8(€~—closure(g,), a))
=€ —closure (d(q,,a))
= e— closure ()
=0
) (g,,b) = e~ closure (& (S (q,, €), b))
= €— closure (0 (e-closure (q,), b))
= e—closure (8 (q,, b))
= €~ closure (q,)

={q,}

Final states are ¢,, g, , because
e— closure (g,) contains final state
€ - closure (g,) contains final state

NFA without € movesis

Deptof CSE(AI&ML) Balaji Institute of Technology &Science

36

2.1 FINITE STATE MACHINES (FSMs)

A finite state machine is similar to finite automata having additional capability of outputs,

Amodel of finite state machine is shown in below figure.

Finite control
Input reading Qutput
head roducing head
vyl | | v E
Input tape Output tape

2.1.1 Description of FSM

FIGURE : Model of FSM

A finite state machine is represented by 6- tuple (0,2,4,6 gy) s Whete

[Qisfinite and non - empty set of states,

2.y isinputalphabet,
3. A isoutput alphabet,

FORMALLANGUAGESANDAUTOMATATHEORY

Page37

4. § istransition function which maps present state and input symbol on to the next state or

OxI—0,
5. 3 isthe output function, and
6. ¢,€0Q,isthe initial state .

2.1.2 Representation of FSM

We represent a finite state machine intwo ways ; one is by transition table, and another isby
transition diagram . In transition diagram , edges are labeled with Input/ cutput.

Suppose , in transition table the entry is defined by a function F, so for input q, and state g,
F(g,,a) = (3(q,, a) , Mg,,a,)) (where § is transition function, 3, is output function.)

Example 1 : Consider a finite state machine, which changes 1's into O's and O'sinto 1's
(1's complement) as shown in below figure .

Transition diagram :

041

140

FIGURE : Finite state machine

Transition table :
Inputs
0 |
Present Next State (NS) | Output Next State (NS) Output
State(PS)
q q 1 q 0

FORMALLANGUAGESANDAUTOMATATHEORY
Page38

Example 2 : Consider the finite state machine shown in below figure, which outputs the 2's
complement of input binary number reading from least significant bit (LSB).

(00 (9
@ 11
TR

FIGURE : Finite State machine

Suppose, input is 10100, What is the output ?
Solution : The finite state machine reads the input from right side (LSB).

Transition sequence for input 10100 :

Inputs
CeRCE oSN oS FGENG
CNHFRHS-u—-ue
So, the output is 01100.

2.2 MOORE MACHINE

If the output of finite state machine is dependent on present state only, then this model of
finite state machine is known as Moore machine. |

A Moore machine is represented by 6-tuple (Q,%,A, 8, 4,¢,), Where

Q is finite and non-empty set of states,

¥, isinput alphabet,

A isoutput alphabet,

8 is transition function which maps present state and input symbol on to the next state or
gx¥t->g,

A is the output function whichmaps 0 - A, (Present state — Output), and

g, € O, istheinitial state .

$a L B e

Sy L

If Z (1), ¢ (¢) are output and present state respectively at time # then
Z(t) = r(g(t)-
Forinput e (null string), Z (¢) = & (initial state)

FORMALLANGUAGESANDAUTOMATATHEORY
Page39

Congider three LSBs of Input
000 (1)
001 (X)
010 (X)
011 (X)
100 (X)

101
A10
ST (X)

101/4 @)
" 310/3@
@)

FIGURE : Moore Machine

o)
=
H

O e OO0 0

Transition diagram :

xjc

24 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construct equivalent Mealy machine for a Moore machine and vice-versa. Let M, and
M, beequivalent Moore and Mealy machines respectively. The two outputs 7; (w) and 7, ()
are produced by the machines M, and M, respectively for input string w . Then the length of
T, (w) is one greater than the length of Z,(w), ie.

|5 w)| = |5 (w)|+1

The additional length is due to the output produced by initial state of Moore machine. Let output
symbol x is the additional output produced by the initial state of Moore machine, then -
Ii(w) = xT(w). |

FORMALLANGUAGESANDAUTOMATATHEORY
Page40

It means that if we neglect the one initial output produced by the initial state of Moore machine,
then outputs produced by both machines are equivalent. The additional output is produced by
the initial state of (for input) Moore machine without reading the input. |

Conversion of Moore Machine to Mealy Machine
Theorem :If i, =(Q,%,A,6,4,4,) isaMoore machine then there exists a Mealy machine
M, equivalentto M,. |
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine A, ,and
Step 2 : Outputs produced by both machines are equivalent.
Step 1(Construction of equivalent Mealy machine M,)
Let M, =(Q,%,A,8,4',q,) whereall terms 0,2, A, 8, ¢, are same as for Moore machine and
»’ is defined as following :
M (g,a) = 4 (8(g,a) forallg e Qand g ¢ ¥

The first output produced by initial state of Moore machine is neglected and transition
sequences remain unchanged.
Step 2 : If x is the output symbol produced by initial state of Moore machine »,, and
T;(w), T(w) are outputs produced by Moore machine A, and equivalent Mealy machine 4,
respectively forinput string w , then

Ti(w)=xT,(w)
Or Output of Moore machine = x| | Output of Mealy machine
(The notation | | represents concatenation).

If we delete the output symbolx from 7, (w) and supposeitis 7' (w) whichisequivalentto

the output of Mealy machine. So we have,
T, () = T()
Hence, Moore machine M, and Mealy machine M, are equivalent,

Example 1 : Constructa Mealy machine equivalent to Moore machine A, givenin following
transition table.

FORMALLANGUAGESANDAUTOMATATHEORY
Page41

3. A remainsunchanged,
4.) isdefined as follows :
8" (lg,b). a) = [6(g,a), A (g,a)], where § and), are transition function and output
function of Mealy machine.
5.) isthe output function of equivalent Moore machine which is dependent on present state
only and defined as follows :
A ([g,8D) = b
6. 4, istheinitial state and defined as [g,,5,], where ¢, is the initial state of Mealy machine and
b, is any arbifrary symbol selected from output alphabet A .
Step 2 : Outputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states gy, ;,9,,...9, On input a,, a,, as,....q, and
produces outputs by, b,, b, ..., then M, entersthestates [gy, b1, [g;, 5], (95, B, [4,. 5]
and produces outputs &,, 5,, ,, ... b, asdiscussed in Step 1. Hence, outputs produced by both
machines are equivalent.
Therefore, Mealy machine M, and Moore machine M, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moore machine. :

FIGURE : Mealy Machine
Solution : Let M,=(0.2,A8,44,) is a given Mealy machine and
M,=(Q'2,A8" 4 q,") betheequivalent Moore machine,
where

L O c{[9¢:nL[40: ¥} 191,71 0415 ¥),[92.7) (95, ¥1} (Since, 0" € O x A)
2. 3 =1{0,1

FORMALLANGUAGESANDAUTOMATATHEORY
Page42

3. 8= {myh
4. g,'=lgey], where g, istheinitial stateand y isthe output symbol of Mealy machine,
5. § isdefinedas following : -

For initial state{g,,] :
6'([‘?0132])0) = [5(9’0 ,0),,3,((]3 >0)] = [ql ,ﬂ]
6'([g0, y1Y) =16(q0 1A (g0:0] = [42,7]
For state [g,,n] :
8 (g, 7], 0) = [8 (41, 0) A (9, O] = [,)
8'([g1, n 1) = 18(q11),M(q1.D)I=1q24]
For state [g,, 7] :
5' ([fh'ﬁ n], 0) = [6 (QZ: 0}: 7" (‘h’ 0)] = [QU !1]
8 (g, D) =[8(92: D), A (g2, D] = [, Y]
For state [g;, ¥]
Sr([%a st 0) = [6 (qlao)s;\'(qwe)] = [Qb y]
5 ([g,, ¥1 D) = B(gy, D, A (g0, V] = L4, 1)
For state {g,, ¥] |
&' (IQZr y]a 0) = [a (QZs 0)’ 8 (‘h ?9)] = [QI.s ?I]
8 ({925 ¥1. 1) = [8 (g2, DA (g2, D] = [,]

(Note : We have considered only those states, which are reachable from initial state)

6. 3 isdefined asfollows:
Algesy1=y
Algsn] =n
Wlgynl=n
Mgyl =
Mgyl =Y

FORMALLANGUAGESANDAUTOMATATHEORY
Page43

2.5 EQUIVALENCE OF FSMs

Two finite machines are said to be equivalent if and only if every input sequence yields identical
output sequence.

Exampile :
Consider the FSM A, shown in figure (2) and FSM. M, shown in figure (b).

w o L

Figure (b)

Are these two FSMs equivalent 7
Solution :

We check this. Consider the input strings and corresponding outputs as given following ;

input string Cutput by #, Output by A,
(1) 01 00 00

{2) 010 001 001
(3)0101 0011 0011
(4) 1000 - 0111 0111
(5) 10001 01111 01111

Now, we come to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same
task. But, A/, hastwo states and A7, has four states. So, some states of M, are doing the same

FORMALLANGUAGESANDAUTOMATATHEORY

Page44

task . e., producing identical outputs on certain input, Such states are known as equivalent states
and require extra resources when implemented.
Thus, our goal is to find the simplest and equivalent FSM with minimum number of states.

2.51 FSMMinimization

We minimize a FSM using the following method, which finds the equivalent states, and merges
these info one state and finally construct the equivalent FSM by minimizing the number of states.

Method : Initially we assume that all pairs (g,,¢,) over states are non - equivalent states
Step 1 : Construct the transition table.

Step 2 : Repeat for each pair of non - equivalent states (gg,,) :
(@ Do g, and g, produce same output ?
(b) Do g, and g, reachthe same states for each input a € 27
(¢) Ifanswers of (a) and (b) are YES, then ¢, and ¢,are equivalent states and
merge these two states into one state [q,,¢,] and replace the all occurrences of
g, and g, by [g,.q;] and mark these equivalent states.

Step 3 : Check the all - present states, if any redundancy is found, remove that,

Step 4 : Exit.
Example 1 : Consider the following transition table for FSM. Construct minimum state FSM.
Inputs
- 0 1
Present Next State Next State
State(PS) (NS) (NS) Output
q, 18 Qt 0 '
q, q, 9, 1
g, 4, d 1
g, a 4, 1

FORMALLANGUAGESANDAUTOMATATHEORY
Page45

After going through this chapter, you should be able to understand :

Reqular sefs and Reqular Expressions
Identity Rules Unit-ll
Constructing FAfor a given REs
Conversionof FAto REs

Pumping Lemma of Regular sets

Closure properties of Regular sets

3.1 REGULAR SETS

A special class of sets of words over S, called regular sets, is defined recursively as follows.
(Kleene proves that any set recognized by an FSM is regular. Conversely, every regular set can
berecognized by some FSM.)

I Every finite set of words over S (including ¢, the empty set)is aregular sel.

2, If Aand B are regularsets over S, then 4 p and AB are also regular.

3. IfSisaregularsetover$, then o sits closure ¥,
4. Nosetisregularunless it is obtained bya finite number of applicafions of definitions (1)to (3).

1.6, the class of regular sets over § s the smallest class containing all finite sets of words over §
and closed under union, concatenation and star operation.

Examples:

) Let £={ah}then the set of strings that contain both odd number of a's and b's is @
regular st

m) Let £ ={0,1} then the setof strings {0110 } isaregular set.

AUTOMATA THEORY AND COMPILER DESIGN

3.2 REGULAR EXPRESSIONS

The languages accepted by FA are regular languages and these languages are easily described
by simple expressions called regular expressions. We have some algebraic notations to represent

the regular expressions.

Regular expressions are means to represent certain sets of strings in some algebraic
manner and regular expressions describe the language accepted by FA.

If ¥ isanalphabet then regular expression(s) over this can be described by following rules.
. Anysymbol from Z. and ¢ are regular expressions.
If , and r, are two regular expressions then union of these represented as r, U » 01
n + 1, isalsoaregular expression
If , and », are two regular expressions then concatenation of these represented as rr, 18
also aregular expression.
. The Kleene closure of a regular expression r isdenoted by » * isalsoaregular expression.
Ifr is a regular expression then (r) isalso aregular expression.
The regular expressions obtained by applying rules 1 to 5 once or more than once are also
regular expressions.

Examples :

(1) if £ = {a, b},then

(a) aisaregular expression {Usingrule 1)
(b} bisaregular expression (Using rule 1)
(€) g + b isaregular expression (Using rule 2)
(d) p+ isaregularexpression (Using rule 4)

(g) gb 1saregular expression (Usingrule 3)

() ab + b+ isaregularexpression (Using rule 6)

(2) Find regular expression for the following

(a) A language consists of all the words over {a, b} endingin .

(b) A language consists of all the words over {a, b} endingin pp.

(¢) A language consists of all the words over {a, b} starting with 4 and ending in b.

(d) A language consists of all the words over {a, b} having pp asasubstring.

(€) A language consists ofall the words over {a, b} ending inaab.

Solution :Let Z={a,b},and

Allthe words over £ = {€ a, b, aa, bb, ab,ba,aaa,.....} = Z *or (a + b) * or (a W b) *

AUTOMATA THEORY AND COMPILER DESIGN

=({g a,b,aa,bb,...})¥

= {& a, b, aa, bb, ab, ba, aaa, bbb, abb, baa, aabb, ...}
= {All the words over {a, b} }

={a+h*

So,(a*+b*)t=(a+h)*

3.3 IDENTITIES FOR REs

The two regular expressions P and () are equivalent (denoted as P = Q) if and only if P
represents the same set of strings as Q does, For showing this equivalence of regular expressions
we need to show some identities of regular expressions.

Let P, Q and R are regular expressions then the identity rules are as given below
L. eR=Re=R

- Eism]]lstfing

($) = ¢ ¢ isempty string,

OR=Rp=0

b+=R=R

R+R=R

RR*=R*R=R'

(R) =K

e+RR =R

0. ; (P+()R=PR+0OR

11. (P+Q) =(P'Q)=(P'+Q)

12. R'(e+R)={e+R)R =R’

2,
¥
4.
3.
6.
1.
8.
 /
1

13. (R+e) =R’

14. g+R =R’

15, (PO)' P=P(QP)
16. RR+R=RR

3.3.1 Equivalence of two REs

Let us see one important theorem named Arden's Theorem which helps in checking the
equivalence of two regular expressions.

AUTOMATA THEORY AND COMPILER DESIGN

Arden’s Theorem : Let P and Q be the two regular expressions over the input set 5. The
regular expression R is given as

R=0+RP
Which has a unique solutionas R = 0P

Proof : 1 et, P and (are two regular expressions over the input siring ¥, .
IfP does not contain ¢ then there exists R such that
R=Q+RP =kl

We will replace R by QP* in equation 1.
Consider R. H. 8. of equation 1.

=0+QP'P

=Q{e +P'F)

=QP‘ v e+ R'R=R'
Thus R=0F
is proved, To prove that R = QP"isa unique solution, we will now replace L.H.S. of equation 1
by Q + RP. Then 1t becomes

Q+RP

But again R can be replaced by Q + RP.
- Q+RP=Q+(Q+RP)P

=(0+0P+RP’
Again replace Rby Q + RP.

=0+0P+(0+RP)F

=0+0P+QP* +RP’
Thus if we go on replacing R by Q + RP then we get,

Q+RP=0+0P+QP +....+0P' + RP"

=Q(c+P+ P+ .. P)+ RP

From equation 1,
R=0(e+P+ P +. ..+ P")+ RP™

Where i=0
Consider equation 2,

R=0lc+P+P 4 v Py + RP™

I

: R=QP" + RP"
Let whe a string of length .

AUTOMATA THEORY AND COMPILER DESIGN

={€,0,00,1,11,111,01,10,........}
={ g,any combination of 0's, any combination of 1's, any combination of
Dand 1 }
Henee, L.H. 8. =R. H.S. is proved.

3.4 RELATIONSHIP BETWEEN FAAND RE

There sa close relationship betweena finite automata and the regular expression we can show
this relation in below figure.

S
Canbe Regular Can be

Converted expression converted to

Deterministic NFAwith
fimite £ Moves
automata

Can be Canbe
converted converted to
NEA without

£ moves i

FIGURE : Relationship between FA and regular expression
The above figure shows that it is convenient to convert the regular expressionto NFAwith e
moves. Let us see the theorem based on this conversion.

3.5 CONSTRUCTING FA FOR A GIVEN REs
Theorem :If bearegular expression then there exists a NFAwith ¢ - moves, which accepls L{r).
Proof : First we will discuss the construction of NFA 7 with & -moves for regular expression
r and then we prove that L(M) = L(r).

Let » be the regular expression over the alphabet 5.

Construction of NFA with ¢ - moves
Case1:

W r=20

AUTOMATA THEORY AND COMPILER DESIGN

NFA M = ({s, 1, { 18,5, {f}) as shownin Figurel (a)
6 (No path from initial state s to
5
U reach the final state f’)
Figure 1 (a)

M r=¢

NFA M = ({s},{ }, 8, &, {s}) asshowninFigure | (b)

() (The initial state s is the final state)

Figure 1 (b)
(i) » = a,foralla €I,
NFA M = ({5, f}.£,8,5 {f))
(One path s there from initial state s

to reach the final state fwith label a.)
Figure 1 (c)

Case2: |r|21

Let , and r, be the two regular expressions over £, £, and N, and N, are two NFA for
r; and r, respectively as shown in Figure 2 (a).

Figure 2 (a) NFAfor regular expression 5, and r,

AUTOMATA THEORY AND COMPILER DESIGN

Now let us compute for final state, which denotes the regular expression.
r will be computed, because there are total 2 states and final state is ¢, whose start state s g,.
ris= (s Jo P e)
=0eMe)+0
=0+0
r! = 0 which is a final regular expression.

3.6.1 Arden's Method for Converting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also see its use in conversion of DFA to RE.

Following algorithm is used to build the . . from given DFA.

1. Let g, bethe initial state.
2. Thereareq,, q;.G::4ssQn number of states. The final state may be some ¢, where j<n.
3. Let o, represents the transition from g, fo g,.
4. Calculate g, suchthat
g, =04,
If g isastart state

g, =@+ &

5. Similarly compute the final state which ultimately gives the regular expression r.

Example 1 : Construct RE for the given DFA.

Solution :

Since there is only one state in the finite automata letus solve for g, only.
- Q=90+ gl+e
Gy =qo(0+1)+e

AUTOMATA THEORY AND COMPILER DESIGN

Example 3 : Construct RE for the DFA given in below figure.

Solution : Letus see the equations
g =ql+q, 0+
4 = o0
g, =yl
g3 =3, 0+4;1+g:(0+1)

Letus solve g, first,
go = g1 +g,0+€
g = 4,01+ gy10+-€
gy = qp(01+10)+ = “R=Q+RP
g, =€ {01+10)* s OP* where
gy =(01+10)* R=gy0=¢,P=(01+10)

Thus the regular expression will be
F=(01+10)*

Since g, is a final state, we are interested in g, only.

Example 4 : Find out the regular expression from given DFA.

AUTOMATA THEORY AND COMPILER DESIGN

Example 8 : Show that the language L ={a' b"|i=0} is not regular.

Solution : The set of strings accepted by language L i,
L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb...}

Applying Pumping lemma for any of the strings above,

Take the string abb.

It is of the form wvw,

Where, |uv |<i|v]z]
To find i such that wv'we L
Take i=2 here, then
w'w = a(bb)b
= abbb
Hence uv'w = abbb ¢ L

Since abbb is not present in the strings of L.
~. Lisnot regular.

Example 9 : Show that L = {0°|n is a perfect square } is not regular.

Solution :
Step 1 : Let L is regular by Pumping lemma. Let n be number of states of FA accepting L.

Step2: Let ;=0 then|zf=nz2.
Therefore, we can write z=uvw; Where [wwisn|v1.
Take any string of the language L= { 00, 0000, 000000 }
Take 0000 as string, here u=0,v=0, w=00to find i such that w'we L.
Take i =2 here, then
wv'w= 0(0) 00

= 00000
This string 00000 is not present in strings of language L. S0 wv'we L.

- Itis a contradiction.

3.9 PROPERTIES OF REGULAR SETS
Regular sets are closed under following properties.

1. Union
2. (Concatenation

AUTOMATA THEORY AND COMPILER DESIGN

Kleene Closure
Complementation
Transpose
Intersection

Union : If R and R, are two regular sets, then union of these denoted by R, + R, or

R, R, isalsoaregular set.

Proof : Let R and R, be recognized by NFA N, and ¥, respectively as shown in
Figurel{a)and Figurel(b).

FIGURE 1(b) NFA for regular set R,
We construct a new NFA N based on union of N, and N, asshown in Figure 1 (c)

FIGURE 1(c) NFAfor N, + N,
Now,
L(N) = e L(N,) € + e I{N,) €
=€ e + eR,e
=R +R,
Since, Nis FA, hence L(N) isaregular set (language). Therefore, R, + R, isaregular set,

AUTOMATA THEORY AND COMPILER DESIGN

2. Concatenation: If R and R, are two regular sets, then concatenation of these denoted

by R,R, isalso aregular set.
Proof : Let R and R, be recognized by NFA m, and N, respectively as shown in
Figure 2(a) and Figure 2(b).

FIGURE 2{b) NFA for regular set R,
We construct anew NFA N based on concatenation of N, and N, asshownin Figure2(c).

FIGURE 2(c) NFA for regular set R R,
Now,
L(N) = Regular setaccepted by N, followed by regular set accepted by N, = RR,
Since, L(N) isaregular set, hence R,R, is alsoa regular set.

Kleene Closure : If Risaregular set, then Kleene closure of this denoted by R*isalso
aregular set.

Proof : Let R isaccepted by NFA n shownin Figure 3(a).

FIGURE 3(a) NFA for regular set R

AUTOMATA THEORY AND COMPILER DESIGN

We construct a new NFA based on NFA N as shown in Figure 3(b).

FIGURE 3(b) NFA for regular expression for r’

MNow,
L(N}={e,R,RR,RRR..}

=

Since, L(N) is aregular set, therefore R* isa regular set.

Complement : If g is a regular set on some alphabet 3, then complement of g is
denoted by £° — R or 7 isalso aregular set.

Proof : Let g be accepted by NFA N = (0Q,2,8 ,5,F). It means, L(N)=R.
N is shown in Figure 4(a).

FIGURE 4(a) NFA for regular set R
We construct a new NFA n'based on p as follows
(a) Change all final states to non-final states.

(b) Change all non-final states to final states.
N ' is shown in Figure 4(b)

FIGURE 4 (b) NFA

AUTOMATA THEORY AND COMPILER DESIGN

Now,

L{N"y= {All the words which are not accepted by NFA N}

= { All the rejected words by NFA N}

=L -R

Since, L(N") isaregular set, therefore (£° — R) isaregular set.

. Transpose : If Ris aregular set, then the transpose denoted by g7, is also aregular set.
Proof : Let g beaccepted by NFA N = (Q.Z.6 ,5,F) asshown inFigure 5(a).

FIGURE 5 (a) NFA N for regular set R

If w isawordin g, then transpose (reverse) is denoted by 7 .
Let w = ¢14a,...a,
Then w' =a,a, ;...

We construct anew N+ basedon p using following rules :

() Change the all final states into non-final states and merge all these into one state and make it

(b) Change initial state to final state.
(c) Reverse the direction of all edges.
A is shown in FigureS5 (b)

FIGURE 5(b) NFA N'for regular set g’

AUTOMATA THEORY AND COMPILER DESIGN

Letw = aa;...a, beawordin g, then it is recognized by n and

w' =a,a, ,..a isrecognizedby v asshown in Figures (b)
In general, we say that ifa word w in R is accepted by x , and then N' accepts 7 .

Since, Z(N") is aregular set containing all w? ;itmeans, L(N'}= RT.

Thus, R” isaregular set,

Intersection : if R and R, are two regular sets over 3, then intersection of these
denoted by R, n R, isalsoaregular set.

Proof : By De Morgan's law for two sets 4 and B over R,

AN B=R*~((R*-4)U (R*-B))

SO, R MRy =Z*—((£*-R)U(T* -HK;)

Let Ry = (2*-R,) and R, =(Z*-R,)

S0, R; and R, are regular sets as these are complement of R and R,.

Let R, =R, W R,

So, R; isa regular set because it is the union of two regular sets R, and R,.
Let R, =Z*-R,

S0, R; is aregular set because it is the complement of regular set R..
Therefore, intersection of two regular sets is also regular set.

AUTOMATA THEORY AND COMPILER DESIGN

AUTOMATA THEORY AND COMPILER DESIGN

REGULAR GRAMMARS

After going through this chapter, you should be able to understand :

« RegularGrammar
+ Equivalence between Regular Grammar and FA
o [Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, S) is said to be regular grammar iff the grammar is
right linear or left linear.
A grammar G is said to be right linear ifall the productions are of the form
A—wB and/or A >w where 4, Be¥ and o, 7.

Agrammar G is said to be left lincar if all the productions are of the form
A->Bw and/or A -sw where 4, Be¥ and ,, 7.

Example 1: The grammar

S - aaB|bbA|

A aAlb

B - bBlaje
isaright linear grammar, Note that & and string of terminals can appear on RHS ofany production
and if non - terminal is present on R. H. S of any production, only one non - terminal should be
present and it has o be the right most symbol onR. H., 8.
Example 2:

The grammar

5 —» Baa|Abb| ¢

A — Aalb

B - Bhlale
isaleft linear grammar. Note that < and string of terminals can appear on RHS of any production
and if non - terminal is present on L. H. S of any production, only one non - terminal should be

present and it has to be the left mostsymbolonL. H. 8.

AUTOMATA THEORY AND COMPILER DESIGN

Example 3:
Consider the grarumar
s s aA
A - aBib
B - Abla

Inthis grammar, each production is either left linear or right linear. But, the grammar is not either
left linear or right linear, Such type of grannar is called linear grarmar. So, a granmar which has
at most one non terminal on the right side of any production withoutrestriction onthe position of
this non - terminal { note the non - terminal can be lefinost or right most) is called lineat
gramnaL

Note that the language generated from the regular grammat is calied regular language. So, there
should be some relation between the regular grammar and the FA, since, the language accepted
by FAis also regular language. So, we canconstructa finite automaton given aregular grammar.

4,2 FAFROM REGULAR GRAMMAR

Theorem : LetG=(V, T, P. §)bea right inear grammar. Then there exists a language L(G)
which is accepted by & FA, 1. &, the language generated from the reguiar grammar
ig regular language.

Proof :Let ¥ =(g,. ¢,, ...y be the variables and the start state §=¢, Let the productions in
the grammar be
g =r B4
g, =¥ X4,

45 = %54

9n * ¥pdn

Assume that the language L(G) generated from these productions is w, Corresponding to each
production in the grammar we can have a equivalent transitions in the FAto accept the string w.
After accepting the string w, the FAwill be in the final state. The procedure to obtain FA from
these productions is given below : '

AUTOMATA THEORY AND COMPILER DESIGN

$tep 1: ¢, whichisthe start symbol in the grammar is the start state of FA.

Step 2 : For each production of the form

4 = wg,
the corresponding transition defined will be
8 g w)=q,3
Step 3: Foreach production of the form g, - w
the comesponding transition defined will be 8”(g,, w) =q, ,whete g, isthe final state,

As the string w L(G) is also accepted by FA, by applying the transitions obtained from
stepl through step3, the language is regular. So, the theorem is proved.

Example 1 : Construct a DFA fo accept the language generated by the fallowing grammar

s — 014
4 - 108
B 0411

Solution :

Note that for each preduction of the form A-» wB, the corresponding transition will be
8(A, w)= B.Also, foreach production 4 -» w , we can introduce the transition 8(4,w) =g,

where g, is the final state. The transitions otvained from grammar G is shown using the following
table:

Productions Transitions

8 - 8(S, 0 =4
A — 84, =8
B ¥ 5(B, 0)=4d
B

- 88, 1l)=g,

The EA corresponding to the transitions obtained is shown below -

AUTOMATA THEORY AND COMPILER DESIGN

So, e DFA M =(0, %, 8, g, 4) where
O={S, 4.8, 9,4, ¢4} . Z={0}}
go=5, 4={g,} _
& is as obtained from the above table.
The additional vertices introduced are 4,.4,, 45

Example 2 : Constructa DFA fo accept the language generated by the following grammar .
S — aA| e
A ~» aAlbB| e
B > BBle

Solution

Note that for each production of the form 4 wg, the corresponding transition will be

8(4,w)= B.Also . for each production 4 —» w, Wecan introduce the transition 3{4.w) =g,

where ¢, is the final state. The transitions obtained from grammar G is shown using the following
table: '

Productions Transitions
8(S,0)= 4

S isthe final state
8(d,a)= A4
5(Ab)=B
Aisthe final state
5(B, b) =B

B isthe final state.

AUTOMATA THEORY AND COMPILER DESIGN

Note : For cach transition of the form 4 s, make A as the ﬁnal state,
The FA corresponding to the transitions obtained is shown below :

Se,the DFA M = (0,3, 8, q,, A) where
Qa={S 48}, L={ab}
qy=8 , d=1{8, 4, B}
§is as obtained from the above table,

4.3 'REGULAR GRAMMAR FROM FA

Theorem: Let i =(Q.%,5 :q9.A4) peafinite automaton. If L is the regular language accepted
by FA, then there exists a right linear grammar G = (V, T, P, §) so that L= L(G).

Proof : Let M =(.%,8,9,,4) beafinite automata accepting L where
O ={do.g1,-qn}

E={a,.ay,..0,)}
Aregular grammar G=(V, T, P, 8) can be constructed where

V= Gos Gya qu,,}

r=x

S=gq,
The productions P from the transitions can be obtained as shown below
Step 1 : For cach transition of the form &(g,, @) =g,

the corresponding production defined will be ¢, — ag,

Step 2: If g c 4 1. e., if g isthe final state in FA, then introduce the production
g —r<

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

AUTOMATA THEORY AND COMPILER DESIGN

REGULAR GRAMMARS
%
After going through this chapter, you should be ablé to understand :

o RegularGrammar
+ Equivalence between Regular Grammar and FA
o Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, S)is said to be regular grammar iff the grammar is
right hinear or left linear.
A grammar G is said to be right linear if all the productions are of the form

A->wB and/or A >w where 4, BeV and ;7"

A grammar G is said to be left linear if all the productions are of the form
A—Bw and/or A —w where 4, BeV and , 7.

Example 1 The grammar

S -y aaB | bbA | ¢

A - aAlb
is aright linear grammar. Note that ¢ and string of terminals can appear on RHS of any production
and ifnon - terminal s present on R. H. S of any production, only one non - terminal should be
present and it has to be the right most symbolonR. H. S,
Example 2:

The grarmar

S P Baa i Abb ! &

A -y Aalb

B - Bblal¢
isaleft linear grammar. Note that & and string of terminals can appear on RHS of any production
and ifnon - terminal is present on L. H. S of any production, only one non - termiinal should be
present and it hasto be the left most symbol onL. H. S.

AUTOMATA THEORY AND COMPILER DESIGN

Note : For each transition of the form 4 -y¢, make Aasthe ﬁnal state,
The FA corresponding to the transitions obtained is shown below :

So,the DFA M =(Q.3, 8, g,, 4) where
O={S. 4,8 ,L={a,b}
g =8, A= (S, 4, B}
§1s as obtained from the sbove table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let I =(0,%,5,q,,4) beafinite automaton, If L is the regular language accepted
by FA, then there exists a right linear grammar G = (V, T, P, S) so that L = L(G).

Proof : Let M =(Q,%,8,q,,4) beafinite automata accepting L where
O = {qo s>} -
Z={a,,8,,..49,}
Aregular grammar G = (V, T, P, S) can be constructed where
V={ Gos Gy oeeq, }
1=
S=q,
The productions P from the transitions can be obtained as shown below :

Step 1 : For each transition of the form 8(g,, a) =¢,

the corresponding production defined will be ¢, — ag,

Step 2: If g € 4 1. e, if g is the final state in FA, then introduce the production
g —>e

As these productions are obtained from the transitions defined for FA, the language accepted by
FA s also accepted by the grammar,

AUTOMATA THEORY AND COMPILER DESIGN

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

5.1 CONTEXT FREE GRAMMARS

Agrammar G =(V, T, P, S) issaid to be a CFG if the productions of G are of the form :
Ao a whereae(Ful)*

The right hand side of a CFG is not restricted and it may be null or a combination of variables and

terminals. The possible length of right hand sentential form ranges from 0to o e, 0 = | o | ==,

As we know that a CFG has no context neither left nor right. This is why, it is known as
CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG's.

Example 1 : Considerthe grammar G = (V, T, P,§) having productions :
S —» aSa | bSH| €. Check the productions and find the language generated.

Solution :
Let P :5 — aSa (RHSisterminal variable terminal)
P, : § - bSh (RHSisterminal variable terminal)
P: S - e (RHSisnullstring)
Since, all productions are of the form 4 — o, where @ e(V U T') * ,hence ¢ isaCFG

AUTOMATA THEORY AND COMPILER DESIGN

So, the final grammar to generate the language L= { w|n (w)=n, (w)} sG=(V,T.E,S)
where
={8} ,T=1{ab}
= | S>e

§— aSh

S bSa

S5 58

} 8 isthestart symbol

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS

Leftmost derivation :

IfG=(V,T,P.5) isaCFGand w € L(G) then a derivation § ? w is called lefimost

derivation ifand only ifall steps involved in derivation have lefimost variable replacement only.

Rightmost derivation :
EG=(,T, P,S) isaCFGand w € I{(G), thenaderivation § =>w is called rightmost

derivation if and only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar § — § + §] § * §| a5, Find lefimost and rightmost
derivationsforstring w = g * g + b.

Solution :
Leftmost derivation forw =g+ g4+ b

S?S'S (Usings - §+*5)
{The first left hand symbol isa, sousing § — a)
(Using § — § + §.inordertoget 5 + 3)
(Second symbol from the leftisa, sousing § — a)

(The last symbol from the lefiis b, sousing § — »)

AUTOMATA THEORY AND COMPILER DESIGN

Rightmost derivation for w = g* 5+ 5
S5 %8 (Using § — § * 5)
= 8%85+5 (Since,intheabove sentential form second symbol from the right is * so,

we can not use § — q|b. Therefore, weuse § — §+ §)

-;}S"‘S+.E-

(Using § — »)
Zta+d (Usings - o)

:R;»a*a+b (Using § — a)
Example 2 : ConsideraCFG S — bd|aB, 4 — aS|addja, B -» bS|aBB|b . Find
leftmost and rightmost derivations for w = ggabbabbba -
Solution :
Leftmost derivation for y = ggahbabbba '
5 = aB (Using § —» gB to generate first symbol of w)
= aaBB (Since, second symbol is a,soweuse B —» aBB)
- gaaBRB (Since, third symbolis a.soweuse B -y aBR)
= aaabBB (Since fourth symbolisb,soweuse g — b)
= agabbB (Since, fifth symbolis b, soweuse B —»)
=» aaabbaBB (Since, sixthsymbol isa, sowe use 8 — aBB)
= aaabbabB (Since, seventh symbol is b, sowcuse B — b)
= acabbabbs (Since, eighth symbolis b, soweuse B — 5S)
= agabbabhbd (Since, ninth symbol is b, soweuse § — hd)
= aaabbabbba (Since, the tenth symbol isa, sousing 4 — a)
Rightmost derivation for y — gaabbabbba
§ = gB (Using § — g to generate first symbol of w)
= gaBB(Weneed a as the rightmost symbol and second symbol from the left side, so we
use B —» aBB)
aaBbS (Weneed aas rightmost symbol and this is obtained from A only, weuse B — 5S)
aaBbbA (Using § — bd)
aaBbba (Using 4 — a)
— aaaBBbba (Weneed bas the fourth symbol from the right)
aaaBbbba (Using 8 = b)
= aaabShbba (Using B — b5)

AUTOMATA THEORY AND COMPILER DESIGN

Figure (c) Parse tree for w = ab Figure (d) Parse tree for w = ab
So, the given grammar is ambiguous,

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another accepting the same language. Ifa grammar
has left recursive property, it is undesirable and left recursion should be eliminated. The left
recursion is defined as follows,

Definition : A grammar G is said to be left recursive if there is some non terminal A such that
4 =* Ae. Inotherwords, in the derivation process starting from any non - terminal A, ifa sentential
form starts with the same non - terminal A, then we say that the grammar is having lefi recursion.

Elimination of Left Recursion
The left recursion in a grammar G can be eliminated as shown below. Consider the A- production

ofthe form A—du|daydas . A BB | By ... By,
where £,'s do not start with A. Then the A productions can be replaced by
A5 B A BA |BA" o By A
A' a4 ey A" oz A"

Note that &,'s do not start with 4.

Example 1 : Eliminate left recursion from the following grammar
E—= E+T|T
T»T*F|F
F(E) |id

AUTOMATA THEORY AND COMPILER DESIGN

5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are notalways optimized. That means gramumar may consists of some extra symbols
(non - terminals). Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Eachvariable (i.e. non - terminal) and each terminal of G appears in the derivation of some
word in L,

2. There shouldnot be any production as x - ¥ where X and Y are non - terminals.

3. If ¢ isnotinthe language L then there need not be the production x »e.

We see the reduction of grammar as shown below :

Reduced grammar ‘

Removal of iminati Removal of
useless symbols & productions unit productions

5.5.1 Removal of useless symbols

Definition : A symbol X is useful if there is a derivation of the form
S="af =" w

Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of
terminals and all these symbols must be reachable from the start symbol S. Those symbols and
productions which are not at all used in the derivation are useless.

Theorem 5.51 :letG=(V, T P, S) be a CFG We can find an equivalent grammar
G, = (V,,I,,P,,S) suchthatforeachAin (V) UT)) there exists @ and g in (JjuT))* and x in

7" forwhich § =" edf=" x.

AUTOMATA THEORY AND COMPILER DESIGN

P I,

S5 a|BblAa ab
Ay aB ab

B alAa I a,b

Theresulting grammar G, =(V,. T;.7,.5) where
v, = {S,A,B}
T, {ab}
P, {

S — a|BbjaA
A Sty aB
B - a|Aa

} 8 isthe start symbol

such that each symbol X in (¥, 1) hasaderivation of the form 5=" axp =" w.

5.5.2 Eliminating < - productions

Aproduction of the form 4 —» ¢ is undesirable in a CFG unless an empty string is derived from
the start symbaol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of e- productions. Such ¢ - productions can be removed.
An e - production is defined as follows :

Definition1: LetG=(V,T, P, §)bea CFG Aproduction in P of the form

A= e

iscalled an = - production or NULL production. Afier applying the production the variable Ais
erased. Foreach Ain V, if'there is a derivation of the form

A=" &
then A is a nullable variable.
Example : Consider the grammar
8 - ABCa|bD
A > BC|b
B

- b|e

AUTOMATA THEORY AND COMPILER DESIGN

Step 2 : Construction of productions 7, . Addanon e-productioninPto 7, . Takeall the
combinations of nullable variables ina production, delete subset of nullable variables one by one
and add the resulting productions to #, .

Productions Resulting productions (7,)
S BAAB S -» BAAB |AAB|BAB|BAA|
AB|BB|BA|AA|A|B
A 0A2 A - 0A2]02

A . 2A0 A - 2A0(20

B AB B » AB|B|A]

[B 1B B IB|1 B

We can delete the productions of the form A —» A_Tn P, , the production - B canbe
deleted and the final grammar obtained after eliminating e -productions is shown below.
The grammar G, = (V,,T},A.,5) where
v, {8,A,B,C,D}
T {a,b,c,d}
P, {S - BAAB|AAB |BAB|BAA|AB|BB|BA|AA|A|B
A 0A2]02[2A0120
B - AB|A|1B|1
} 8 isthe start symbol

5.5.3 Eliminating unit productions

Consider the production 4 —» 8. The left hand side of the production and right hand side of the
production contains only one variable. Such productions are called umt productions. Formally,a
unit production is defined as follows.

Definition : LetG =(V, T.P, 8)be a CFG. Any production in G of the form

A—=> 8B

whereA, g e 15aunit production,
fn any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.

AUTOMATA THEORY AND COMPILER DESIGN

In a CFG, there is no restriction on the right hand side of a production. The restrictions are
imposed on the right hand side of productions ina CFGresulting in normal forms. The different
normal forms are :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

5.6.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

(Non - terminal —» Non - terminal Non - terminal]

Non - terminal —» terminal

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbaols, e productions and unit productions from it. Thus this reduced
grammar can be then converted to CNF.

Definition :
LetG= (V, T,P,S)bea CFG. The grammar G is said to be in CNF if all productions are
of the form '
A BC

A a
where A,Band CeV andaeT.
Note that if a grammar is in CNF, the right hand side of the production should contain two
symbaols or one symbol. If there are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol must be a terminal.

Theorem 5.6.1 : Let G= (V. T, P, 8) be a CFG which generates context free language
without &. We can find an equivalent context free grammar G, =(V,.T.,P,S) inCNF such that
L(G)=L(G,) i.e.,all productionsin G, areofthe form

A - BC
or
A -

AUTOMATA THEORY AND COMPILER DESIGN

Thus, from (7), (8) and (9), the resultant grammar becomes :
SV, §|VFY, |al b
s
Vo=
Vi 51,
V. — 8V,
A
V.=]

Now, in the resultant grammar (C), following is the production which is not in the form of CNF:
SV,

We can write this production as :
SV, ene(10)
Vy > Vo

Thus, from (10) and (11), the resultant grammar becomes :

: S VSV, ¥, | ap
K=¢-
V=1
o r,
¥, > SV,
Vo> SV,
v, > T
V.=]
Thus, the resultant grammar (D) is in the form of CNF, which is the required solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows :

Non - terminal —» one terminal. Any number of non - terminals

Example :
isin GNF
isin GNF

AUTOMATA THEORY AND COMPILER DESIGN

From the subtree shown in figure (b) , we get g T 2z, § z, andconsidering

the subtree shown in figure(c), weget §sg OF 5o -
The subtree shown in figure (b) can be added as many times as we like in the parse tree

shown in figure (a). S0, sz § 2! = z,'2,2!

Therefore, string z.can be written as uzyz,2,y for some uand y substrings of z. The substrings
z, and z, can be pumped as many times as we like. Replacing z,, z; and z, by v, wand x

respectively, we get z=uvwxyand g = w'wx'y forsomei=0,1,2,
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
lemma is always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free.

Step1:

Supposethat . iscontext- free. Let 1 be the natural number obtained by using pumping lemima.
Step 2:

Chooseastring xe £ suchthat ix 21 using pumping lemma principle write z=uvwxy.

Step 3:

Find suitable i so that w 'wx (ye & . Thisisacontradiction. So L isnot context - free.

AUTOMATA THEORY AND COMPILER DESIGN

Case 2:

veat and .. Let ,_,r and pg=n!. Pumping v and x, (g+1) times, we get :
2= ayHhypdtly

Inz,no.ofa'swillbe n—p+at+p=nlin,

No.of b's in 2’ will remain n! +n. Hence, no. ofa's=no.of b'sin z'.

Similarly, in other cases, we can arrive at strings not as per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold for regular languages do not always hold for context free languages.
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.
Union
Concatenation and
Kleene Closure (Context-free languages may or may not close under following properties)
Intersection
Complementation
Theorem 5.8.1 :1If I, and L, aretwo CFLs, then union of L and I, denotedby I; + I,
or I; u L, isalsoa CFL.

Proof :

Let CFG G, = (¥,,1,,P,S) generates I and CFG G, = (V,,T,,P,§) generates L,
and G=(V,T, P,S) generates L =) + ;.

We construct & as follows :

Step 1: Rename the variables of CFG G,

£V, = {8, 4,B,..., X} thentherenamed variables are {S), 4;, B),...X;} . This modification
should be reflected in productions also,

AUTOMATA THEORY AND COMPILER DESIGN

Step 2 : Rename the variables of CFG G,

If ¥, ={5,4,B,.X}, then the renamed variables are {Sy, 43, By....X3}. This
modification should be reflecied in production also.

Step 3 : We get of the productions of ; and G, to get productions of G as follows :

§ — 8|8y, where S, and §; are starting symbols of grammars G; and G, respectively and
5; - productions and §, - productions remain unchanged.

T=T,uT,,
VA8 iy By K DS Ay B X)
Since, all productions of G; and G, including § — 5; | S, are in context-free form, so
G isa CFG.
Language generated by G :
L(G) =Language generated from (8] or S53)
=[anguage generated from §; orlanguage generated from S
= L(Gy) or L(G,) (Since, §; and §, are starting symbols of Gy and G respectively.)
= I; or L, (Since, G, produces 1; and G, produces L, .)
=L+ L

Herice, statement of the theorem is proved.

Example : Considerthe CFGs § — aSh|ab and § —» ¢Sdd | cdd , which generate
languages I; and [, respectively, Construct grammar for L = Ly + L.

Solution :

Let Gy generales I; and G, generates [, and G = (¥, T, P,S) generates L = Ij + La.

Renaming the variables of G| and G, , we get

¥,=18,} and ¥, = {S§,}, where § - productions are §; —» aSb | @b, and
§, - productions are Sy — cSydd | edd

AUTOMATA THEORY AND COMPILER DESIGN

PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

Push down automata

Acceptance by final state and by empty stack
Equivalence of CFL and PDA

Interconversion

Introduction to DCFL and DPDA
6.1 INTRODUCTION

APDA is an enhancement of finite automata (FA). Finite automata with a stack memory can be
viewed as pushdown automata, Addition of stack memory enhaices the capability of Pushdown
automata as compared to finite automata. The stack memory is potentially infinite and it is a data
structure. Its operation is based on last - in - first - out (LIFO). [t means, the last object pushed
on the stack is popped first for operation. We assume a stack is long enough and linearly arranged.
We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A mode! of pushdown automata is shown in below figure. It consists of a finite tape, a reading
head, which reads from the tape, a stack memory operating in LIFO fashion.

le—— Input Tape

Finite State Control

FIGURE : Model of Pushdown Automata

AUTOMATA THEORY AND COMPILER DESIGN

There are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by 1 and input alphabet is denoted by £ . PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA
A pushdown automata is described by 7 - tuple (Q,2.1',8, 44,2, F) . Where
1. @ isfinite and nonempty set of states,
2. z isinputalphabet,
3. 1 isfinite and nonempty set of pushdown symbols,
4, g isthe transition function which maps
From @ % (T U {e}) = T to (finite subset of) O x I'*,
g, & O, isthe stariing state,
6. Z, e I',isthestarting (top most or initial) stack symbol, and
7. F c @,isthesetoffinal states.

6.1.3 Moves of PDA
The move of PDA means that what are the options to proceed further after reading inputs in

some state and writing some string on the stack. As we have discussed earlier that PDA is

nondeterministic device having some finite mumber of choices of moves in each situation.
The move will be of two types :

1. Tnthe first type of move, an input symbol is read from the tape, it means, the head is advanced
and depending upon the topmost symbol on the stack and present state, PDA has numbet of
choices to proceed further.

. Inthe second type of move, the input symbol is not read from the tape, it means, head is not
advanced and the topmost symbol of stack is used. The topmost of stack is modified without
reading the input symbol. It is also known as an e -move,

Mathematically first type of move is defined as follows.
5(Q: a,Z) = {(Pl,al),(f'z:az}a---(Pns“n)} t where fOf l=is fy s By are states in
Q,ack, Zelad ael*.

PDA reads an input symbol a and one stack symbol Z in present state g and for any value(s) of

i, enters state p,, replaces stack symbol Z by string &, €T *, and head is advanced one cell on

the tape. Now, the leftmost symbel of string o, is assumed as the topmost symbol on the stack.

Mathematically second type of move is defined as follows.

§(4,6,2) = {(D1 (P2, @3) (Py,)} » Where for 1 < i < n,g, p, are states in
O.ack Zel,and a,cl'*.

AUTOMATA THEORY AND COMPILER DESIGN

PDA does not read input symbol but it reads stack symbol Z in present state g and for any
value(s) of i, enters state p, , replaces stack symbol Z by string a, < I *, and head is not
advanced on the tape. Now, the leftmost symbol of string «, isassumed as the topmost symbol
on the stack.
The string , be any one of the following :
1. @, = inthiscase the topmost stack symbol Z,,, iserased and second topmost symbol
becomes the topmost symbol in the next move. It is shown in figure (a).

ml=y

.

FIGURE(a): Move of FDA
2. @, = ¢.c e T ,inthis case the topmost stack symbol Z,,, is replaced by symbol ¢. Itis
shown in figure(b)

=

FIGURE(b): Move of PDA
3. a,=¢¢;..c, »inthis casc the topmost stack symbol Z,,, isreplaced by string cic,... ¢, -
It is shown in figure(c).

AUTOMATA THEORY AND COMPILER DESIGN

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description {ID) of PDA

LetPDA M = (Q.ET.8, 4y, Z,.F) , thenits configuration ata given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input string, and remaining stack
string (symbols). So, an D is (g, x,&) ,where ge Q,x e Z*, x e I'*.

The relation between two consecutive [Ds is represented by the sign ‘—-— i
We say (g,ax,Z8) |w{p.x.aB) if § (¢.a, Z) contains (p,a), where Z,f,a0eT'*,a
maybenullora £, p,q € O for M

The reflexive and transitive closure of the relation 5+ is denoted by ‘;g
Properties :

1. If (q,x,a]l;}-(p,':“,w],whcre agel*xel*,and p,g €Q,thenforall y €Z *.

@, 2P, y.a),

2. If (q.x}'.a)l;}{p.y,a), where « eT*x,ycZ*, and p,g e, then

(g.x.a)5-{pea), and
3. If (q,x,tr)‘ﬁ(pﬁ,.ﬂ), where @, Bel*xef*, and pge@. then

(g, % r)]%(pse.ﬁ?), where y eI’ *

AUTOMATA THEORY AND COMPILER DESIGN

6.1.5 Acceptance by PDA

Let Mbe aPDA, the accepted language is represented by N(M). We defined the acceptance by
PDA in two ways.

L Let M =(QZ T4, q;.2,.F) ,then N(M) s accepted by final state such that
N (M]={W?(-?aaW,zo)'%(q r€:8), where q e @, weZ*Z,,fer*, and

qr £ F}

It is similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language N(M) is the set of all input strings for which some choice of moves
leads to some final state,

Let M ={Q.2.I.6.9,.Z,.¢) , then N(M) is accepted by empty stack or null stack such

that N (M)= {wilg,.w,2,)iz {P.c.€) where p € 0, w e £%}

The language N(M) is the set of all input strings for which some sequence of moves
causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and it is
represented by ¢ .

Example . CUI].Sider a PDA M= ({?ns'i':an}:{ﬂs c}i{aﬁzﬁ}lﬁsqﬂlz{) !{q2}} Shﬂvﬂ] I'n'
below figure. Check the acceptability of string aacaa.

a, Zﬂ, GZQ a,a,

¢, a,a QE,ZU,ZD :
\&7 %

8
a, a,aa

FIGURE ; PDA accepting {a"ca":nz1}

Note : Edges are labeled with Input symbol, stack symbol, written symbol on the stack.

AUTOMATA THEORY AND COMPILER DESIGN

Solution ;
The transition function § is defined as follows :

8(q0:a.2y) = {(qg,0Z,)} »
&(gq.a,a) ={{gy.aa)},
8lgq.0,a) ={(g,.9)]
&(g,,a,a) ={(g,,€)}, and

8(q€.25) = {(q2:Z)}
Following moves are carried out in order to check acceptability of string aacag

(4o, aacaa Zo)-(gs. acae aZy)
’—(qu,ma »aaZ o)
1—(ql,aa,aa2 o)

‘—(q,,a,azo)

|—[q,,E,ZO)

1_{9'1»'5:20)

Hence, (gq.aacaa ,Zg)]ﬁ(ql,e,zn) .
Therefore, the string aacaa is accepted by A7,

6.2 CONSTRUCTION OF PDA

In this section, we shall see how PDA's can be constructed.

Example 1 : Obtain a PDA to accept the language L(M) = { wOw"| we(a+b)*} where
gt isreverse of W.
Solution:

Ttis clear from the language (M) = { wOw™} thatif 1= app

then reverse of w denoted by & willbe j® _ pp, and the language L willbe 0,2
i.e., abbCbba which is a string of palindrome.

AUTOMATA THEORY AND COMPILER DESIGN

To accept the string :
The sequence of moves made by the PDA for the string aabChaa is shown below.
Initial ID

(g9, aabChaa, Z,) (qy, abChaa, aZy)

(qg, bChaa, aaZy)

(qq. Chaa, baaZ;)
(qy.baabaaZ)
(g,,aa,aaZ)
(4y,2,0Z,)
(gi.€.Z)

(92, & Zp)
(Final Configuration)

Since g, is the final state and input string is & in the final configuration, the string aabChaa
is accepted by the PDA .

To reject the string :
The sequence of moves made by the PDA for the string aabChab is shown below .
Initial [D
(g9 aabChab, Zj) (gq: abChab, aZy)
(gp. 2Chab, aaZ,)
(9o, Chab, baaZy,)
(g1, bab, baaZy)
(‘II . ﬁb, ”azﬂ}
(¢1, b, aZy)
(Final Configuration }
Since the transition &(g,, b, a) isnotdefined, the string aabChab is not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA to accept the language L = { a” 5" n=1} by a final state.

Solution :

The machine should aceept n number of a's followed by n number of b's.

AUTOMATA THEORY AND COMPILER DESIGN

6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata,

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § whichmaps from
0 % (T w {e}) » T to(finite subset of) @ x ' *. Anondeterministic PDA accepts an input if
a sequence of choices leads to some final state or causes PDA to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M = ({g,}.{a.b}{a.b,Z}.8.9,.Z 4), for the
language [= {a"b" : n = 1} ,where § isdefined as follows :

F(y:€ Z) = {(gqs ab), (gg-aZb)} (Twopossiblemoves forinput = onthetape and Zon the stack),

8 (gy.a,a)={(go.€)} . and & (g,,b,0)={(g;,€)}
Check whether string w = gabb isaccepted ornot ?

Solution : Initial configurationis (g,,aabb, Z) . Following moves are possible :
(gy, aabb,ab) —= (g;.abb,b) —» §
(QU’Mbsz) {
(o, aabb,aZh) —eew (‘i‘qoﬂbb,zm

(gy.abb,abb) {gp.abb,aZbb)

(gq.bb,bb) (gy,bb, Zbb)

{‘.ifﬂ!bsb)
(qo.bb,abbb) (4o,bb,aZbbb)
(gg:5:€)

[b
Hence, w = aabbis accepted by empty stack.

AUTOMATA THEORY AND COMPILER DESIGN

One thing is noticeable here that only one move sequence leads to empty store and other don't.
In other words, we say that some move sequence(s) leads to accepting configuration and other
lead to hang state.

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA (DPDA) is just like DFA, which has af most one choice 1o move for certain

input. APDA M =(0Q,X,T,5,4,, Z,, F) isdeterministic ifit satisfies both the conditions given

as follows :

1. Foranyg € Q,a e(Zu {t—:—}j .and Z I', § (g, a. Z) hasat most one choice of move.

2. FPorany ge @, and 7z e, if 8(g,5, 2) is defined ie. 8(g, 5 Z) = ¢, then
8(g.a,7) = pforall g e T

Example : Consider a DPDA M = ({g4.9,}.{a.c}, (. Z;}.6,9,. Zy,¢) accepting the

language {q"ca" :n >1}.where § is defined as follows ¢

8(gg,a,Zy) = {{g0,42,)}

&(gq,a.a) ={(gq,9a)},

d(gq.c.a)={{g,,a)}

8(gy.a.a) = {(g;.€)}, and 6(g,.8,Zy) = {(q.€)}

Check whether the string w = gacag isaccepted by empty stack or not ?
Solution :

We see that in each transition DPDA has at most one move. Initial configuration is
(g4, aacaa, Z,) . Following are the possible moves.

(qo.aacaa, Zy) —> (qy,acaa,aZy) —» (gy,caa,aaZ) — (gy,aa,a0Z)
i

{QHE#E) — (‘hielzu) = {'?Ira:azu]
Hence, the string w = aacaa is accepted by empty stack.

Aswe have discussed in earlier chapters that DFA and NFA are equivalent with respect to
the language acceptance, but the same is not true for the PDA.

For example, language I, ={ww ":w = (@ b) *} isaccepted by nondeterministic PDA,
cannot by any deterministic PDA. A nondeterministic PDA can not be converted into equivalent
deterministic PDA, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.
So, we say that deterministic PDA is a proper subset of nondeterministic PDA. Hence, the
power of nondeterministic PDA is more as compared to deterministic PDA.

AUTOMATA THEORY AND COMPILER DESIGN

6.4 ACCEPTANCE OF LANGUAGE BY PDA

The language can be accepted by a Push Down Automata using two approaches.

1. Acceptance by Final State : The PDA accepts its input by consuming it and then itenters
in the final state.

Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

6.4.1 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(0,,2,T,8,,p,.Z,,4) isa PDA accepting CFL L by empty store then there
exists PDA Mz :(Qz:zsl‘;’é‘z;pzozzg{q_f}} Whic}lmeptslbyfmﬂl state,

Proof :
First we construct PDA M, based on PDA M, and then we prove that both accept L.

Step 1: Construction of PDA M, based on given PDA i/

1 issame for both PDAs. We add a new initial state and a new final state with given PDA », .

S0, 0y =0y uip,ug;}

The stack alphabet T, of PDA a1, contains one additional symbol Z, with T, .

8o, I, =T, u{Z,}
The transition function &, containsall the transitions of given PDA. 1+, and two additional transitions
(R and Rs) asdefined as follows:

Ry :8,(paie,2y) = 2, 2,)),

Ry:8,(q.0,2)=6,(g,4,2) forall (g0, Z)In O, x (£ w fe}) x T,

(the original transitions of 4,), and
Ry:1d,(g9,6.Z,)=1{(gq,,€)} forall 4 e g,

Bythe Ry, a1, moves fromitsinitial ID (p,,<, Z,) tothe initial IDof », By R, u, usesall the
transitions of s, after reaching the initial IDof 4, and by using Ry u, reaches the final state g7 .

AUTOMATA THEORY AND COMPILER DESIGN

The block diagram is shown in below figure.

Vi €:24,2, Z, €,Zy,a @
P PDA M
\2) ‘ &

FIGURE : Block diagram of PDA a,

Step 2 : The language accepted by PDA A, and PDA M,

The behaviorsof M, and M, are same exceptthe two by e -moves definedby By and Rj.
Let string w ¢ L andaccepted by M,,then

(F|,Waz1}|f,l—(€=€,€) where g € 0, (Result 1)
For M, , theinitial IDis (p,,w,Z,) and it can be written as (p,,ewe2,). So,

(Prrewe, Zy) |z (pisw.Z1Z,) (This initial IDof M)
i (9,€.Z;) (by R, andResult 1)

\M;J{(}‘;—.E,(Z} QEF; (B}' Rg)

Thus, if A, accepts w, then A, also accepts it
Itmeans L{M,) = L(M)) (Result 2)
Letstring w « I andaccepted by PDA M,, then

(PrewsZy) |'E (P w.Z,2,) (By ») (Result 3)

o (0.6.2,) (By Ry) (Result 4)

1@ (47.€2) ael; By R;)
Note : The Result 3 is the initial ID of M,. The Result 4 shows the empty store for M, if
symbol Z, is not there,

AUTOMATA THEORY AND COMPILER DESIGN

For M, theinitial IDis (p,, w,2,)

So, (P, w.Z,) |4~ (q9.€,€) , where ¢ € O, (ByResult3 and Result4) Thus, if M, accepts
w, then M, also acceptsit.
It means, L(M,)c L(M,) (Result 5)

Therefore, L= 7(M,)=L(M,) (FromResult? and Result 5)
Hence, the statement of theorem is proved.

Example: Consider a nondeterministic PDA M, =({g,}, {a.b}, {a.b,5}, 6.g,.5,4) which
accepts the language 1. = {o"p" : n = 1} by empty store, where § isdefined as follows :
&(gy,5,.8) ={(gy.ab), (3,,a5h)} (Two possible moves),
8(gs.a.a) ={{qy,€)}, and 5(gq,b,.8) = {(gq,€)}

Construct an equivalent PDA. A, which accepts L in final state and check whether string
w = gabb 1s accepted or not ?

Solution : Following moves are carried out by PDA M, in order to accept w = aabb :

(gp,aabb,§) l— (qy, aabb,aSh)

[— (§y>abb, Sb)

‘—(gu,abb,abb}

|—(qq, b, bb)
|—(g0:5.8)

‘_ (g4,€:€)

Hence, (do,aabb,5) |37 (4:€,)
Therefore, yw = gabb isacceptedby M.

AUTOMATA THEORY AND COMPILER DESIGN

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Designof TM

Computable functions

Recursively Enumerable languages
Church's Hypothesis & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages (generated from regular grammar), context free languages (generated from
context free grammar) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a finite automaton connected to read -
write head with the following components :

. Tape

. Read - write head

. Control unit

Tape
LeTalelal...[o]bfel....T]

Read-write Head

Control
Unit

FIGURE : Turing machine model

AUTOMATA THEORY AND COMPILER DESIGN

Tape : Iisatemporary storage and is divided into cells. Fach cell can store the information of
only one symbol. The siring to be scanned will be stored from the left most position on the tape.
The string to be scanned should end with infinite nunber of blanks.

Read -write head : Theread - write head can read a symbol from where it is pointing to and
it can write into the tape to where the read - write head points {o.

Control Unit: The reading /writing from / to the tape is determined by the control unit, The
different moves performed by the machine depends on the current scanned symbol and the
current siate, The read - write head can move either towards Teft orright i.e., movement can be
on both the directions. The various moves performed by the machineare

1. Change of state from one state to another state
2. The symbol pointing to by the read - write head can be replaced by another symbol.
3. The read - write head may move either towards left or towards right.

The Turing machine can be represented using vatious notations such as
° Transition table
. Instantaneous deseription
. Tramsition diagram

7.2.1 Transition Table

The table below shows the transition table for some Turing machine. 1 ater sections describe how
to obtain'the transition table.

Tape Symbols (I}

-

a b Y

(911 X, R 2 (g3, ¥, R}

(‘?15 a, R) (415 Y’ L) {Q%s Y’ R)

{2, 0, Ly £ (42 Y, Ly -

& (g3 ¥, R) g4, B, By

AUTOMATA THEORY AND COMPILER DESIGN

Note that for each state g, there can be a.corresponding entry for the symbol in 1, In this table
the symbols a and b are input symbols and can be denoted by the symbol 5, Thus S I
excluding the symbol B. The symbol B indicates a blank character and usually the string ends
with infinite number ofB's 1, ¢., blank characters, The undefined entries indicate that there are no
~transitions defined or there can be a transition to dead state. When there is a transition to the

dead state, the machine halts and the input string is rejected by the machine. K is clear from the
table that

§:0% Tw(@x T x{LE}}

where O= {g0.41.%:, .92 }3 E={a b}

[=fa b X, Y, B}

g, isthe initial state; Bisaspecial symbol indicating blank character

F ={g,} which is the final state.
Thus , a Turing Machine M can be defined as follows.
Definition : The Turing Machine M =(Q.X,T,8,4,,B,F) where

Q is setof finite states

. is set of input alphabets

T igsetof tape symbols

& Istransition function O xT (O xIx{L,R})

¢, isthe initial state

Bis aspecial symbol indicating blank character

F @ issetoffinal states,

7.2.2 Instantaneous description (ID)

Untike the ID described in PDA, it Turing machine (TM), the ID is defined on the whole string
{ not on the string to be scanned) and the current state of the machine.

Definition :

AnIDof T™M isastringin o gf , where g is the current state, o g is the string made from tape

symbols denoted by 1°i. ¢., « and 4 e I'*. The read - write head points to the first character of
the substring . The initial ID isdenoted by g where q is the start state and the read - write
head points to the first symbol of o from left. The final ID isdenoted by ofg8 where ge F is
the final state and the read - write head points to the blank character denoted by B.

AUTOMATA THEORY AND COMPILER DESIGN

Example : Consider the snapshot of 2 Turing machine
Tape
lazi321a3'§a4Eq'2§85§36la7|&a|

Read-writs Head

Control
Unit

T this machine, each «,e ' (i.e,,each a,belongsto the tape symbol). In thissnapshot, the
symbol a;is under read - write head and the symbol towards left of g, 1.e., g, isthe current

state, Note that, in the Turing machine, the symbol immediately towards left of the read - write
head will be the current state of the machine and the symbol imsmediately towards right of the
state will be the next symbol to be scanned. So, in this case an ID is denoted by

A yelyd, G A5Gy iy
where the substring aaase, towards left of the state g, is the left sequence, the
SUbSTING asta,as..... lowards right of the state g, is the right sequence and ¢, isthe current state
of the machine. The symbol a5 isthe next symbol to be scanned.
Assume that the current D of the Turing machine is aa,03,4;3500,4...... 25 shown in
snapshotof example. :
Suppose, there is a transition (g, a5) = (g3, b, B
It means that if the machine is in state ¢, and the next symbol to be scanned is a5, then the
machine enters into state g, replacing the symbol a; by & and R indicates that the read - write
head is moved one symbol towards right. The new configuration obtained is
0y a0 b3 260 Ggns
This can be represented by 8 IOVE 85 0,605, 4,580 0y - | — 218,330, 50306470
Similarly if the current TD of the Taring machine is a,a,a,0, ¢, dsa,0,4
and there is a transition
{g,.a5)=(g,.01.L)
tneans that if the machine isin state ¢, and the next symboi to be scanned is ay, thenthe machine
enters into state g, replacing the symbol as by ¢, and Lindicates that the read - write head is
toved one symbol towards left, The new configuration obtained is

Ay ¢ 44010500y

AUTOMATA THEORY AND COMPILER DESIGN

This can be represented by a move 88 a,0,4,¢, 430060705 [G005 013,0,0,%; 0.

This configuration indicates that the new state is ¢, , the next input symbol to be scanned

is g, . The actions performed by TM depends on
1. The current state.
2. The whole string to be scanned
3. The current position of the read - write head
The action performed by the machine consists of
1. Changing the states from one state to another
2. Replacing the symbol pointed to by the read - write head
3. Movement ofthe read - write head towards left or right.

7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let M =(0,IT.,6.4,.8.#) be a TM. Let the 1D of M be
@3y Gy Oy erd, Whee @ €T for 1< j<n-1, g e is the current state and 4, as
the next symbol to scanned. Ifthere is a transition 8y, ap) ={p, &, B
thenthe move of machine Mwillbe 4,4, 4,

Ifthere is a transition 8g,a) ={p, b L)
then the move of machine M willbe

Q0305 By G gy Gy | —hp03

7.2.4 Acceptance of a language by TM
The language accepted by TM is defined as follows.

Definition :

Let M = (Q,5,1',8.4,.8.F) bea TM. The language L(M) accepted by M isdefined as
L(A) = {wlqywh-*a p oy where wel%pe F and o, ap e T4}
i.e., setofall thosewords win x+ which causes M to move from start state g, to the final
state p. The langnage accepted by TM is called recursively enumersble language.

The string w which is the string to be scanned, should end with infinite number of blanks.
Tnitialty, the machine will be inthe start state ¢, withread - writehead poirting to the first symbol
of w frorn left. Afier some sequence ofmoves, if the Turing machine enters into the final state and
halts, then we say that the string w is accepted by Turing machine.

AUTOMATA THEORY AND COMPILER DESIGN

7.2.8 Differences between TM and PDA
Push Down Automa :

1.

&
3

6.

7.

A PDA is a nondeterministic finite automaton coupled with a stack that can be used to store
astring of arbitrary length,

‘The stack can be read and modified only at its top.

A PDA chooses its next move based on its current state, the next input symbol and the
gymbol at the top of the stack.

There are two ways in which ithe PDA may be allowed to signal acceptance. One is by
entering an accepting state, the other by emptying its stack.

. 1D consisting of the state, remaining inputand stack contents to describe the "current condition”

ofaPDA.

The languages accepied by PDA’s either by final state or by empty stack, are exactly the
context - free languages.

A PDA languages lie strictly between regular languages and CSLs.

Turing Machines :

1.

The TM is an abstract computing machine with the power of both real computers and of
other mathematical definitions of what can be computed.

TM consists of a finite - state control and an infinite tape divided into cells.

TM makes maves based on its current state and the tape symbol at the cell scanned by the

tape head.

The blank is one of tape symbols but not input symbol.

TM accepts its input if it ever enters an accepting state.

The languages accepted by TM's are called Recursively Enumerable (RE) languages.
Instantaneous description of TM describes current configuration ofa TM by finite- Tength string.
Storage in the finite control helpsto designa TM for a particular language.

A TM can simulate the storage and control of a real computer by using onetape fo store all
the locations and their contents,

7.3 CONSTRUCTION OF TURING MACHINE (TM)

I this section, we shall see how TMs can be constructed.

Example 1: Cbtain a Turing machine foaccept the fanguage L= {0 "1" fn21}.

Solution : Note that n aumber of ('s should be followed by n number of 1's, For this let us
take an example of the string 1 = 0001111 The siring w should be accepted as it has fout zeroes
followed by equal number of 1's.

AUTOMATA THEORY AND COMPILER DESIGN

Genera! Procedure :
Let ¢, be thestart state and let the read - write head points 1o the first symbol of the string to e
scanned, The general procedure to design TM for this case is shown below :
1. Replace the left most 0 by X and change the stateto ¢, and then move the read - write head
towards right. This is because, afiera zero 18 replaced, we have to replace the corresponding
1 so that number of zeroes matches with number of 1's.
2. Search for the Jefimost 1 and replace it by the symbol Y and move towards jefi (soasto
obtain the leftmost 0 again). Steps 1 and 2 can be repeated.
Consider the situation
XX00YY1l
i
4o
where first two (s are replaced by Xs and first two I'sare replaced by Ys. In this situation, the
read - write head points to the left most zexo and the tnachine is in state g, . With thisasthe
configuration , now let us design the TM.
Step 1: Instate g, replace 0 by X, change the state to ¢, and move the pointer towards
right. The transition for this can be of the form '
8ge, B ={q, X, B)
The resulting configurationis shownbelow .
XXXOYYH
7
&
Step 2 : Instate g, , we have to obtain the left - most 1 and replace itby Y, For this, letus move
fhe pointer to point o Jeftmost one. When the poiniter is moved towards 1, the symbels encourttered
may be 0 and Y. Irrespective what symbol is encountered, replace 0 by 0, Y by Y, remain instate

g, and move the pointer towards right. The transitions for this can be of the form
8{a, 50):{'?1995}2)
8(q:.Y)=(q, Y. R)

When these transitions are repeatediy applied, the following configuration is obtained.

XXXoyyll

T
4

AUTOMATA THEORY AND COMPILER DESIGN

$tep 3: Instale g, if the input symbol to be scanned isa 1, then replace 1 by'Y, change the
state to g, and move the pointer towards Ieft. The transition for this can be ofthe form
O(q, Jy=(q,.Y,1)
and the following configuration is obtained.
XXXO0YYY!L
&

2
Note that the pointer is moved towards left, This is because, a zero is replaced by X and the
corresponding 1 is replaced by Y. Now, we have to scan for the left most 0 again and so, the
pointer was move towards left. _
Step 4 : Note that to obtain lefimost zero, we need to obtain right most X first. So, we scan for
the right most X. During this process we may encounter Y's and 0's . Replace Yby Y, 0by 0,
vemain in stafe g, only and move the pointer towards left. The transitions for this can be of the
form 6(‘]21]{)“{‘}2’1,’1‘}
5(42 ,0):((]’2 ,G,L)
The following configurationis obtained
XXXOYYYL
o
L]
Step 5: Now, we have obtained the right most X. To get leftmost 0, replace X by X, change
the state to g, and move the pointer towards right. The transition for this can be of the form
3(‘12 ,X}m(qg sX sR)
and the following configuration is obtained
XXXOYYY!

?

4o
Now, repeating the steps 1 through 5, we geithe configuration shown below :
KXXXYYYY

4
s
Step 6 : Instate g, ifthe scanned symbol is Y, it means that there are no more (s, Ifthere are

1o zetoes we should see that there are no 1's. For this we change the state o ¢,, replace Yby Y
and move the pointer towards right. The transition for this can be of the form

AUTOMATA THEORY AND COMPILER DESIGN

Page100

8(q¢.Y)=(45,7,R)
and the following configuration is obtained
KXXXYYYY
t
43
Instate g,, we should sce that there are only Ys and no more 1's. So, as we canreplace Yby Y
and remainin g, only. The transition for this can be of the form
d(¢5.Y)={44,¥ R}
Repeatedly applying this transition, the following confipuration is obtained .
XXYYYYB
4
93
Note that the string ends with infinite number of blanks and so, in state ¢, if we encounter the
symbol B, means that end of string is encountered and there exists nnumber of O's ending withn
munber of 1's. So, in state ¢, , on input symbol B, change the state fo ¢, , replace Bby Band
move the pointer towards right and the string is accepted. The transition for this can be of the
form 9(g4.8)=(q,.8.R)

The following configuration is obtained
XEXXXYYYYRBB

T\
4

So, the Turing machine to accept the language 1 ={a” " n21}

isgivenby M =(0.5,1.8.4.B.F)
where

@=tq.q,9.5} Z={01}; T={01L XY B}
4o € O isthestartstate of machine; B eI isthe blank symbol.
F ={g,} isthe final state,
& is shown below.
gy, 0} = (4. X, B}
5(g..0)=(q,,0,R)

AUTOMATA THEORY AND COMPILER DESIGN

Page101

8(q,,¥)=(g9:,7 R}
g1y ={¢s.7 L}
F(a:,Yy=(g,.Y. 1)
844,01 =(g,,0,L}
§(g2, X)=(g0.4,R)
8{g,.Y)=(g..Y . R)
5(g5.¥)=(g5.Y R}

5(‘;3)3)7‘:(44’8:'?{)
The transitions can also be represented using tabular form as shown below.

Tape Symbols (I}
0 I3 X Y

9 (. X, R) & = {43 V. R 4
a@ (@08 | @tD . (. ¥, B -

% (¢2,0,L) = (20, X. B) (g2, 7. L) =

q3 T = ¥ {q?,s Y, R} (qs. B,]

4 # 2 i = e

The transition table shown above can be represented as transition diagram as shown below:

To accept the string :

The sequence of moves or computations {IDs} for the string 0011 made by the Turing machine
are shown below

AUTOMATA THEORY AND COMPILER DESIGN

Page102

Initial ID

go0011 L~ Xg 011
Xg, 071
Xgo0¥1
XX¥q 1
Xq XYY
JLX'YQ:;Y
XXTYBq,
{ Final ID}

Example 2 : Obtain a Turing machine to accept thefanguage L (M) = { 0" 1"2" [n2 1}

Solution : Note that n number of O's are followed by n number of 1's which in turn are followed
by n number of 2's. In simple terms, the solution to this problem can be stated as follows :

Replace first n number of O's by X's, next nnumber of 1's by Y's and next n number of 2's by
7's. Consider the situation where in first two ('s are replaced by X's , next immediate two 's are
replaced by Y's and next two 2's are replaced by Z's as shown in figure 1(a).

XX00YY11ZZ22 XXXOYYHNZZ22 XXXOYY11Z2222

T 1 t
(¢ 4] 9

® (®) ©

FIGURE 1 : Various Configurations
Now, with figure 1(a). a as the current configuration, et us design the Turing machine. In
state g, , if the next scanned symbol is 0 replace it by X, change the state to g, and move the
pointer towards right and the situatior: shown in figure 1{b) is obtained . The transition for thiscan
beof the form

8(qy,0)=(g, X ,R)

Instate g, wehave to search for the leftmost 1. It is clear from figure 1(b) that, when we
are searching for the symbol 1, we may encounter the symbols 0 or Y. So, replace 0 by0,Yby
Y and move the pointer towards right and remain in state g, only. The transitions for this can be
of the form §{g..0)y=(q,,0,R)

8{q.Y)=(g,,Y.R)

AUTOMATA THEORY AND COMPILER DESIGN

Page103

The configaration shown in figure 1(c) is obtained. Instate ¢,,0n encountering 1 change the
state to ¢, , replace 1 by Y and move the pointer towards right. The transition for this can be of
the form

8¢q,.1)=(q,.Y ., R)
and the configuration shovm in figure 2(a) is obtained

XXXOYYY1Z722 XXOYY V12722
o 1
P] 4

@ (®) ©
FIGURE 2 : Various Configurations

In state g, , we have to scarch for the lefimost 2. Tt is clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 or Z. So, replace 1 by 1, Z by
7 and move the pointer towards right and remain in state g, onlyandthe configuration shownin
figure 2(b)is obtained. The transitions for this can'be of the form

G{gq, Jy=(g,,LLR}
85(g,,Z)={g,.2,R)

fnstate g,, on encountering 2, change the state to g, , replace 2 by Z and move the pointer
towards left. The transition for this can be of the form

5{¢;.2)=(g4.2,L)
and the configuration shown in figure 2(c) is obtained. Once the TM is instate ¢,, it means that

equal pumber of 0's, 1's and 2's are replaced by equal number of X's, V's and Z's respectively.
At this point, next we have to search for the rightrost X to get leftmost 0. During this process, it
is clear from figure 2(c) that the symbolssuch as £'s, 1,5, V's, O's and X are scanned respectively
one after the other. So, replace Z by Z, 1 by 1, Yby Y, 0 by 0, move the pointer towards left and

stay in state g, only. The transitions for this can be of the form
51g+,2)=(g5.Z,L}
§{q;.0=(q4.1, L)
F{gs,Y ¥=(gs.7.1)
§(45,0)=(4;.0.L)
Only on encountering X, replace X by X, change the state t0 g, and move the pointer
towards right to get leftmost 0. The transition for this can be of the form
5(43,X}={?GeXaR)

AUTOMATA THEORY AND COMPILER DESIGN

Page104

All the steps shown above are repeated till the following confipuration is obfained.
XXXXYYYYZZZZL

t
9

In state g, , if the input symbol is Y, it means that there are no (s If there are no 0's we
should see that there are no 1's also. For this to happen change the state to ¢, , replace YovY
and move the pointer towards right. The transition for this can be of the form

8(g0:¥)=(44.Y . R)

Tn state ¢, search foronly Y's, replace Y by Y, remain in state ¢, only and move the pointer

towards right, The transition for this can be of the form
' 8(q. ¥)=(a4, . R)

Instate g, ,if'we encounter Z, it means that thereareno 1's and so we should see that there
areno 2's and only Z's should be present. So, on scanning the first Z, change the state to g, ,
replace Z by 7 and move the pointer towards right. The transition for this can be of the form

8(q4.Z)y=(q5.2,R)

But, instate g, only Z's should be there and no more 2's, 50, a5 long as the scanned symbol
is Z, remain in state 4, , replace Z by Z and move the pointer towards right. But, once blank

symbol B is encountered change the state to ¢, , replace B by B and move the pointer towards
right and say that the input string is accepted by the machine. The transitions for this can be of the
form 5(g5.Z)=(a5.2 k)
5(q5.8)=(g4.8.R)

whete g, Is the final state.
So, the TM to recognize the language L={ 0"1"2"n 21} 18 givenby
‘M = (Qv}:: raésq()aBaF)
where
Q“{qnsfhs{}zthQth‘?s}; Z={0, 12}
I'={0,1,2X, 7%, Z, B}; g, istheinitial state
B is blank character ; E={ 4 }isthe final state
5 is shown below using the transition table.

AUTOMATA THEORY AND COMPILER DESIGN

Page105

r

Y

g, g, LR
4 9, YR
4, g, LR
9, g, 1q,, XL
4. RS R A
q; g,-LR

9
The transition diagrarm for this can be of the form

YIYR LEZR
WOk iR

Example 3 : Obtaina TMtoaccepi thelanguage [= {w{w e(0+ 1)} containing the substring 001,

Solution : The DFA which accepts the language consisting of strings of (s and 1's having a sub
string 001 is shown below :

The transition table for the DFA is shown below :

AUTOMATA THEORY AND COMPILER DESIGN

Page106

0 1

9o 9, 9q
4 9 7.
4, 4 q,

q! qj q3

Wo have seen thatany language which is sccepted by a DFA s regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction { unlike the previous examples, where the read - write header was moving inboth
the directions). For cach scanned input symbol (either O or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by 0 and 1 by 1 and
the resd - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. It is evident in both the transition tables). So, the transition

table for TM to recognize the Iangunage consisting of 0's and 1's with a substring 001 is shown
below :

0 1 B
4, g, .0, R g,, LR -
4, 42’9’-1{ 4, LR -
g, 7,0, R ¢.s LR -
q, q,,0, R g,- LR

9,
The TMisgivenby

M =(Q,§3y1",5,qm3aF)
where

g= {qas Q;!gzrq”qs}; Z={0,1
T={0,1}; - isdefined already

g, istheinitial state; B blank character
F=1{ g, }isthefinal state

The transition diagtam for this is shown below.

AUTOMATA THEORY AND COMPILER DESIGN

Page107

11,R
/1R WOR opr

OIG,OIO, Efl,R B’B-R

1#LR

Example4: Obiaina Turing machine fo accept the language containing strings of (s
and 1'sending with 011,

Solution : The DFA which accepts the language consisting of strings of ('s and 1's ending
with the string 001 is shown below :

The transition table for the DFFA i3 shown below :

& 0

9 9 9,

4 4. 9,

9, ki 4,

4q. 4, 4,

We haveseen that any language which is accepted by a DFA isregular, As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (either 0 or 1), in whichever state the DFA was

in, TM also enters info the same states on same input symbols, replacing 0 by O and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same { the format may be different. Tt is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of (s and 1's ending with a substring 001 is
shown below : :

AUTOMATA THEORY AND COMPILER DESIGN

Page108

5 G

g, g -0L.R
9, g0 R
a, g,0.R
q, q,0,R

qd I

The TMisgivenby M =(0.L.1.8,9,,8,F)
where

O={q 4,00 } 5 =01} 5 T={0, 1}
5 is defined already
g, istheinitial state ; B doesnotappear
F={ ¢, }isthe final state

The transition diagram for this is shown below:

LR OOR

Example 5 : Obtain a Turing machine to aceept the language
L={wwis evenand L= {a,b}}
Solution 1

The DFA to accept the language consisting of even number of characters is shown below.

ab

D@0

ab

AUTOMATA THEORY AND COMPILER DESIGN

Page109

The fransition table for the DFA is shown below :

a b
s 4 4

4 s 9o

We have secn that any language which is accepted by a DFA s regulax. As the DFA processes
the input siring from left to right in only one direction, TM also processes the input string in only
onedirection. Foreach scarmed input symbol (cither a orb), in whichever state the DFAwas in,
TM also enters into the same states on same input symbols, replacing a by aand bby band the
read - write head moves towards right. So, the transition table for DFA and TM remains same
(the format may be different). So, the ransition table for TMto recognize the language consisting
of &'s and b's having even number of symbols is shown below :

8 a b B

4 %’a’R QHb’R ‘L’B’R

q, g, R g, LR -

4 & B
The TM is given by

M :(Q’E:T95>QO=B’F)

where
Q={ 4.4 % I={ab}; I={ab
5 isdefined already ; g, istheinitial siate
B does not appesar ; F = { g, } isthe final state

The transition diagram of TM is given by
ETER

AUTOMATA THEORY AND COMPILER DESIGN

Page110

Example 6 : ObtainaTuring machine fo accepta palindrome consisting of a's and b's of any length.
Solution : Letus assume that the first symbol on the tape is blank character B and is followed
by the string which in turn ends with blank character B. Now, we have to design a Turing machine
which accepts the string, provided the string is a palindrome. For the string to be a palindrome,
the first and the last character should be same. The second character and last but one character
in the string should be same and so on. The procedure to accept only string of palindromes is
shown below. Let g0 be the start state of Turing machine.
Step 1 : Move the read - write head to point to the first character of the string. The transition
for this can be of the form §{g4.B)=(g.B.R)
Step 2 Instate g, , if the first character isthe symbol &, replace it by B and change the state
10 g, and move the pointer towards right, The transition for this can be of the form.
5({)1,0}—“‘:(Q‘2,B,R}

Now , we move the read -~ write head to point to the last symbol of the string and the last
symbol should be a. The symbols scanned during this process are a's, b'sand B. Replace aby
a, bby b and move the pointer fowards right. The transitions defined for this can be of the form.

d(g,,0)=(¢3,0.R}
§(g;.0)=0(q,.0.R)
But, once the symbol B is encountered, change the state to g, , replace B by B and move the
pointer towards left. The transition defined for this can be of the form
E(g2.B)=(g3,B.L)
In state 4, , the read - write head points to the last character of the string, Ifthe last character
is o, then change the state to ¢, , teplace a by B and move the pointer towards left. The transitions
defined for this can be of the form

5(43 ,G)3(4¢,B :L)
At this point, we know that the first character is a and last character is also a. Now, reset the
read - write head to point to the first non blank character as shown in step5.

Tnstate ¢, ,if thelast character is B (blank character), it means that the given string isan odd

palindrome. So, replace B by B change the state to ¢, and move the pointer towards right. The
transition for this can be of the form

6{44,B)=(q,,B,R)}
Step 3 : I'the first character is the symbol b, replace it by B and change the state from g, to ¢,
and move the poinier towards right. The transition for this can be of the form
F(q1:0}=(g5,B.R)

AUTOMATA THEORY AND COMPILER DESIGN

Pagel11

Now, we move the read - write head to point to the last symbol of the string and the last
symbel should be b, The symbols scanned during this process are a's, b'sand B. Replaceaby s,
b by band move the poinier towards right. The transitions defined for this can of the form

5(?59“)2(9555!:R}
5('?5!b):(‘?51b1R)

But, once the symbol B is encountered, change the state to g, , replace B by B and move
the pointer towards left. The transition defined for this can be of the form

F{gs,8)=(a¢.8.L)

Tn state g, , the read - write head points to the last character of the string, Ifthe last character

isb, then change the state to g, , teplace b by B and move the pointer towards left. The transitions
 defined for this can be of the form
$(ge.0¥=(g98.L)

At this point, we know that the first characier ish and last character is alse b. Now, reset the
read - write head to point to the first non blank character as shown in step 5.

In state g, . Ifthe last character is B (blank character), it means that the given string is an
odd palindrome. So, replace B by B, change the state to ¢, and move the pointer towards right.
The transition for this can be of the form .

8(gg-Br=(q,,8.8)
Step 4: In state ¢, ifthe first symbol is blank character {B), the given string is even palindrome
and so change the state to ¢, , replace B by B and move the read - write head towards right. The
fransition for this can be of the form

§(q.,B)y=(g;.8.%)

Step5: Resetthe read - write head to point to the first non blank character. This can be done
as shown below.

Ifthe firstsymbol of the stringis a, step 2 is performed and if the first symbol of the stringis
b, step 3 is performed. After completion of step 2 or siep 3, itis clear that the first symbol and the

ast symbol match and the machine is currently in state g, . Now, wehave toreset the read - write
head to point to the first nonblank character in the sting by repeatedly moving the head towards
left and remain in state ¢, . During this process, the symbols encountered may beaorbor B
(blank character). Replace aby a, b by b and move the pointer towards left. The transitions
defined for this can be of the form 8(q,,a)=(g.a,L)

F{g4,0)=(q, B L)

AUTOMATA THEORY AND COMPILER DESIGN

Pagel112

But, if the symbol B is encountered , change the state to g, replace B by B and move the pointer
towards right. the transition defined for this can be of the form

8{g4.B)=(g.8,R)
Afier resetting the read - write bead to the first non - blank character, repeat through step 1.
So, the TM to accept strings of palindromesover { a,b }isgivenby 32 (0, &, &, g5,8.F)

where 0= {4,.¢,.0,.9..9, %, des ¢} } Zefa B} T={ah BY; g, istheinitial state

Bisthe blank character; F={ ¢, }; 5 is shown below using the transition table

r
) b B

9 5 7,8, R
q, g,.B.R g,,B.R
q, g,,b0,R q,,8,L
g, - g, B, R
4 4,-b, L 4,B.R
q, g,.b.R g, B, L
4, - 4,8, L 7,,B. R

9, = o]
The transition diagram to accept palindromes over { a, b }is given by

The reader can trace the moves made by the machine forthe strings abba, aba and asba and is
left as an exercise.

AUTOMATA THEORY AND COMPILER DESIGN

Page113

Example 7 : Constructa Turing machine which accepts the iznguage of aba over T={a,b}.

Solution : ThisTM isonlyforL={ aba}
We will assume that on the input tape the string 'aba’ is placed like this

GTe To (5 [8]
2

The tape head will read out the sequence upto the B character if 'aba’ is readout the TM will
halt afler reading B.

. {na,R) {b.b.R} (e R)
Start @ @ s

(8,8,5)

The triplet along the edge written is { input read, output to be printed, direction)
Let us take the transition between start state and ¢, is(a, a, R) thatis the current symbol

read from the tape is a then as a output a only has to be printed on the taps and then move the
tape head to the right. The tape will look Jike this

Again the fransition between g, and ¢, is (b, b, R}, That means read b, print b and move
right. Note that as tape head is moving ahead the states are getting changed.

T [= 15 [o

The TM will accept the language when it reaches to halt state. Halt state is always a accept
state for any TM. Hence the iransition between ¢, and haitis (B, B, 8). This meansread B, print
B and stay there or there is no move left or right. Eventhough we write (B, B, L or (B, B,R)
it is equally correct. Because after all the complete input is already recognized and now we
simply want to enter into a accept state or final state. Note that for invalid inputs such as abb or
ab ot bab there is either no path reaching to final state and for such inputs the TM gets
stucked in between. This indicates that these ail invalid inputs can not be recognized by our TM.

The same TM can be represented by another method of transition table

AUTOMATA THEORY AND COMPILER DESIGN

Pagel14

a b
Start (ql 20y R} =

4 i (4,.5. %)

4 - (g,a.8) . =

q, - (HALT, B, 8)
HALT - -

Inthe given transition table, we write the {ripletin eachrowas :
(Next state, oufput to be printed, direction)
Thus TM can be represented by any of these methods.

Example 8 : Designa TMthatrecognizestheset L= {0"1"|nz0}.

Solution : Here the TM checks for each one whether two 0's are present in the left side. Ifit
match then only it halts and accept the string.

The transition graph of the TM is,

FIGURE : Turing Machine for the given language L= {("1"in2 0}

AUTOMATA THEORY AND COMPILER DESIGN

Pagel15

Example 11 : What does the Turing Machine described by the 5- tup%&s.,
(0.0, 40 >LR)=(QO ﬁ!‘ﬁ 30,7090, B. g, 8, R,

(Q} ,Osq; 3G$ R)ﬁ (Q1 :1!q0!19 R) a”td (QI SB,Qi > BS R} Do When giveﬂ E bIt Stnng
asinput ?

Solution ; The transition diagram ofthe TMis .

LR

FIGURE : Transition Diagram for the given TM
‘The TM here reads an input and starts inverting 0's to 1's and 1'sto 0%s till the first 1.
After it has inverted the first 1, it read the input symbol and keeps itas itis till the next 1.
After encountering the 1 it starts epeating the cycle by inverting the symbol till next 1. halts
when it encounters a blank symbol,

7.4 CONPUTABLE FUNCTIONS

ATuring machine is a language acceptor which checks whether a string x s accepted by a
Janguage L. Tn addition to that it may be viewed as computer which performs computations of
finctions from integers to integers. In traditional approach an integer is represented in unary, an
integer ;> ¢ isrepresented by the string ¢ .

Example 1 : 2 is represented as g2. If a function has k argaments, &, £y,J, , then these

integers are initially placed on the tape separated by 1's,as 0°10 1 10% .

If the TM haits { whether in or not in an accepting state) with a tape consisting of 0's for some m,
then we say that f(i,, iy,......i,) =m, where fisthe fimction of k arguments computed by this
Turing machine.

AUTOMATA THEORY AND COMPILER DESIGN

Pagell6

&g) =gss B, 1)

6(g4,0) = (44, 0, L)

¥gy,0) = (g6, 0. R) :
Ifinstate ¢, aB is encountered before a 0, we have situation (i) described above. Enter state
g,and move left, changing all 1's to B 's until encountering a'B. This B3 ischanged back toa 0,
state g, isentered, and M balts,
6. o d(ge, D =(g: B, R)

3(gs,0) ={g;, B, B)

d(gs,1) = (g5, B, R)

5(gs5,B) = (g¢. B, R)
Ifin state g, a 1 is encountered instead of a 0, the first block of 0's has been exhausted, as in
situation (if) above. M enters state g, to erase the rest of the tape, then enters g, and halts.

Example 4 : Designa TM which computes the addition of two bosifwe integers.

Solution : Let TM M =(Q, {0, 1, #}, 8,5} computes the addition of two positive integers m
and n, It means, the computed fanction £{ m, n) defined as follows::

m+nlf m, ne i)

0 (n=n=0)

Jmn) ={

1 on the tape separates both the rumbers m and n. Foilowing values are possible form and .
1. m=n=0 (#1#.....istheinput),
2. m=0and p2 0 {10 isthe input },
3. mz0andn=0 (#0714 - 38 the input), and
4. meoand w20 { #0m10"% -.... isthe input)
Several techniques are possible for designing of M, some are as follows :
{2) M appends { writes) m after n and erases the m from the left end.

(b) M writes 0 in place of 1 and erases one zero from the right or leftend . Thisis possiblein
case of n 0 OF m=0 only. Ifm=0orn=0then 1 is replaced by #.

We use techniques (b) given above. M is shown in below figure.

AUTOMATA THEORY AND COMPILER DESIGN

Pagel117

Lisreplaced by ¢
in advance

9&?(Hnw=0
0.0, R 1,9, “7/
& 2 oot ;

Bince, Lis replaced by 0in
advance, so eraseone Hif =0
FIGURE : TM for addition of two positive integers
7.5 RECURSIVELY ENUMERABLE LANGUAGES

AlanguageLoverthealphabet 5 iscalledrecirsively emmerable ifhereisa TMMthatacceptevery wond
inTandeither rejects(crashes) ar loops for every word inlanguage L the complement of L.

Accept (M) =1

Reject (M) + Loop M) =L’
When TM M is still running onsome input of recursively emumerable languages) we can never
tell whether M will eventually accept if we let it run for long time or M will run forever (in loop).

Example : Consider alanguage{a+b)*btb{at+b)*

TM for this]anguage is, (b, b, R) (2,8 K)

BB T N

(a,8,R)

FIGURE : Turing Machine for(a+b)*bb(a+b)”

Here the inputs are of three types.

1. Allwords with bb = accepts (M) as soon as TM sees two consecutive bs it halts.

2. All sirings without bb but ending in b = refects (M). When TM sees a single b, it enters
state2. If the string is ending with b, TM will halt at state 2 which is not accepting state.
Hence it is rejected.

All strings without bb ending in ‘a2’ or blank B'= loop (M) here when the TM seeslastait
enters state 1. Tn this state on blank symbol it loops forever.

AUTOMATA THEORY AND COMPILER DESIGN

Page118

Recursive Language

Alanguage L over the alphabet v iscalled recursive if there is a TM M that accepts every word
inL and rejects every wordinL' L. e,

accept (M}=1L
reject (M) =1’

loop{M) = 4,

Example :Consideralanguageb(a+b)¥ . Itisrepresented by TM as:

(sa)—222)

FIGURE : Turing Machineforb(a+b)*

This TM accepts all words begixming with 'b' because it enters halt state and it rejects all words
beginning with a because it rerains in start state which is not accepting state.

A language accepted by a TM is said to be recursively enumerable languages. The subclass of
recursively enumberable sets (. €) are those languages of this class are said to be recursive sets
orrecursive language. '

7.6 CHURCH'S HYPOTHESIS

According to church’s hypothesis, all the fumetions which can be defined by human beings canbe
computed by Turing machine. The Turing machine is believed to be ultimate computing machine.

‘The clrreh's original staternent was shightly different because he gave histhesis before machines
were actually developed. He said that any machine that can do certain list of operations will be

able to perform ail algorithms. TM ean perform what church asked, so they are possibly the
- machines which church described,

Charrch tied both recursive fimctions and computable functions together, Bvery partial recursive

function is computable on TM. Computer models suich as RAM also give rise to partial recursive
fimctions. S they can be simulated on TM which confirms the validity of churches hypothesis.

Important of church's hypothesis is as follows .

AUTOMATA THEORY AND COMPILER DESIGN

Page119

First we will prove certain problems which catmot be soived using TML

If churches thesis is true this implies that problems cannot be solved by any computer or any
programming languages we might every develop. '

Thus n studying the capabilities and Timitations of Turing machines we are indeed studying
the fundamental capabilities and limitations of any computational device we might even
construct.

It provides a general principle for algorithmic computation and, while not provable, gives strong
evidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structure as the multistack machine, but in place of each stack is
acounter. Counters hold any non negative integer, but we can only distinguish between zero and
NON 2710 Counters.

" Counter machines are off - line Turing machines whose storage tapes are semi - infinite, and
whose tape alphabets contain only twa symbols, Z and B (blank). Furthermore the symbol Z,
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and iay never appear on any other cell. An integer i can be stored by moving the tape head i
cells to the right of Z. A stored number can be incremented or decremented by moving the tape
head rightor left. We cantest whether a number is zero by checking whether Z is scanned by the
head, but we cannot directly test whether two numbers are equal.

! iﬁ! Read-only Input I Sl

Finite
Conirol

HOERENOODE

BO0S0DDE

FIGURE : Counter Machine

AUTOMATA THEORY AND COMPILER DESIGN

Page120

¢ and § are customarily used for end markers on the input. Here Z is the non blapk symbol on

each tape. An instantaneous deseription of a counter machine can be described by the state, the
input tape contents, the position of the input bead, and the distance of the storage heads from the
symbot 7 (shown here as 4, and 4,). We call these distances the counts on the tapes, The
counter machine can only store a count an each tape and tell if that court is zero.

Power of Counter Machines'

- Bvery language accepted by a counter Machine is recursively enumerable.
- Every language accepted by a one - counter machine is a CFL so a one - counter machine
is a special case of one - stack machinei.¢.,aPDA

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines are :

i Withmultiple tapes. _

il 'With one tape but multiple heads.

#il. With two dimensional tapes.

iv. Nondeterministic Turing machines,
1tis observed that computationally all these Turing Machines are equally powerful. That means
one type can compute the same that other can, However, the efficiency of computation may
vary,
1. Turing machine with Two - Way Infinite Tape : _
This is a TM that have one finite control and one tape which exténds infinitely in both directions.

Firte AcceptReject
controt

[T

tape

FIGURE : TMwith infinite Tape

Tt turns out that this type of Turing machines are as powerful as one tape Turing machines whose
tape has aleftend.

AUTOMATA THEORY AND COMPILER DESIGN

Pagel21

. Muitiple Turing Machines :

Einite AcceptReigct
control

I
woos LT T TT
erez T T T1 LT

wpes [1 1111
FIGURE : Multiple Turing Machines

Amultiple Turing machine consists of a finite control with k tape heads and k tapes, each tape is
infinite in both directions. On a single move depending on the state of the finite control and the
symbol scanned by each of the tape heads, the machine can ;

1. Change state.

2. Printa new symbo! on each of the cells scanned by its tape heads.

3. Moveeachofits tape heads, independently, one cell to the lefforright orkeep it statzonary

Initially, the input appears on the first tape and the other tapes are blank.
3. Nondeterministic Turing Machines :

Anondeterministic Turing machine is a device with a finite control and a single, one way infinite
tape. For a given state and tape symbol scanned by the tape head, the machine has a finite
number of choices for the next move, Each choice consists of anew state, a tape symbol to print,
and a direction of head motion, Note that the non deterministic TM is not permitted to make a
move in which the next state is selected from one choice, and the symbol printed and/ or direction
of head motion are selected from other choices, The non deterministic TM accepts its input if any
sequence of choices of moves leads to an accepting state.

As with the finite autotnaton, the addition of nondeterminism to the Turing machine does not
allow the device to accept new languages.

AUTOMATA THEORY AND COMPILER DESIGN

Pagel122

4 Multidimensional Turing Machines : it

FIGURE : Muttidimensional Turing Machine

The multidimensional Turing machine has the usual Fnite control, but the tape consists of a
k - ditnensicnal array of cells infinite in ali 2k directions, for some fixed k. Depending on the state and
symbol scaned, the device changes state, prints a new symbol, and moves its tape head in one of 2k
directions, either positively or negatively, along one of the k axes. Initially; the input is along one axs, and
the head is at the left end of the input.At any time, only a finite number of rows in any dimension
contains nonblank symbols, and these rows each have only a finite number of nonblank symbols
5. Multihead Turing Machines : :

mot | |Accootneies

[S
control

hwad 1 hoad n
nead 2

N
tape

FIGURE : Multihead Turing Machine

Ak - head Turing machine has some fixed pumber, k, of heads. The heads are numbered 1 through
k, and a move of the TM depends on the state and on the symbol scanned by each head. In one
move, the heads may each move independently left, right or remain stationary. '
6. Off - Line Turing Machines :

Finlte
Conral

Ll 1 }/ ;) =1

T 1 Lo
FIGURE : Off - line Turing Machine

AUTOMATA THEORY AND COMPILER DESIGN

Pagel123

COMPUTABILITY THEORY

After going through this chapter, you should be able to understand :

. Chomsky hierarchy of Languages
lLinear Bounded Automata and CSLs
LR {0} Brammar
Decidability of problems
UTM and PCP
P and NP problems

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories (type 0 to type 3) based on the right
hand side forms of the productions.

(a) Type 0

These types of grammars are also known as phrase structured grammars, and RHS ofthese are
fiee from any restriction. All grammars are type 0 grammars,

Example : productions of types AS — aS, SB— 5§b.8 —€ aretype production.
(b) Type 1

We apply some restrictions on type { grammars and these restricted grammars are known as
type 1 or context - sensitive grammars (CSGs). Suppose a type 0 production yad —» yf8

and the production & —» f# is restricted such that | i< | fland f#<. Then these type of
productionsis known as type 1 production. Ifall productions of'a grammar are of type 1 production,
then grammar is known as type 1 grammar, The language generated by a context - sensitive
prammar is called context - sensitive language (CSL).

AUTOMATA THEORY AND COMPILER DESIGN

Page124

In CSG, there is left context or right context or both. For example, consider the production
adf—s caff Inthis, o isleft contextand £ is right context of Aand A is the variable which is
replaced.

The production of type $ -» ¢ isallowed intype 1 if ¢isinL(G), but § should not appear on
right hand side of any production.

Example : productions § —» 48,5 —» €,4 > ¢ arctype 1 productions, but the production
oftype A — Sc isnotallowed . Almost every language can be thought as CSL.

Note : Iflefi or right contexi is missing then we assume that ¢ is the context.
{c} Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known 2s type 2 or context - free productions. A production of the form a— 8, where
@, fe(y UE)* is known as type 2 production, A grammar whose productions are type 2
production is known as type 2 or context - free grammar (CFG) and the languages generated by

tiris type of grammars is called context - free languages (CFL).
Example : §—>5+8,5->S5*S, §->id are type 2 productions.

(@) Type 3

This is the most restricted type. Productions of types 4 — g or 4 — aB|Ba ,where 4, Be¥ ,

and o e % areknown as type 3 or regular grammar productions. A production of type 8 -» € is
alsoallowed, if g isin generated language.

Example : productions §-»aS, §— ¢ are type 3 productions.
Left - linear production : Aproductionoftype 4 -» Ba iscalled left - Jinear production.
Right-Tinear production : Aproductionoftype 4 —» aB is called right - inear production.

Aleft - linear or right - linear grammar is called regular grammat. The language generated by a
regular gravomear is known as regular language.

AUTOMATA THEORY AND COMPILER DESIGN

Pagel25

8.2 LINEAR BOUNDED AUTOMATA

The Linear Bounded Automata (LBA) is a model which was originally developed as a model for
actual computers rather than model for computational process. Alinear bounded automatonisa
- testricted form of a non deterministic Turing machine.

Alinesr bounded antomaton s a multittack Toring machine which has only ene tape and thistape
is exactly of same length as that of input.

“The lincar bounded automaton (LBA) accepts the string in the similar manner as that of Turing
machitie does. For LBA halting meansaccepting. In LBA computation is restricted to an area
bounded by length of the input. This is very much similar to programming environment where size
of variable is bounded by its data type.

< a a a

7

Lefiend
marker

Pinite
control

FIGURE : Linear bounded automaton

The LBA is powerful than NPDA but less powerful than Turing machine. The input is placed on
the input tape with beginning and end markers. In the above figure the input is bounded
by <and>. :

A linear bounded automata can be formally defined as:

LBA is 7 - tuple on deterministic Turing machine with
Mm(Q, T, 5a Gos Daccept » ‘?rcjeci} hav;ng
. Two extra symbols of left end marker and right end marker which are not elementsof 1.
2. Theinput lies between these end markers. _
The TM cannot replace < or > with anything else nor move the tape head left of < or
rightof >,

AUTOMATA THEORY AND COMPILER DESIGN

Pagel26

8.3 CONTEXT SENSITIVE LANGUAGES (CSLs)

"The context sensitive languages are the languages which are accepted by Hnear bounded automata.
These type of lanpuages are defined by confext sensitive grammar. In this grammar more than
one terminal or non terminal symbol may appear on the left hand side of the productionrule.
Alongwith it, the context sensitive grammar follows following rules:

i Thenumber of symbols on the left hand side must not exceed number of symbols on the
right hand side.

ii. Therule ofthe form 4 -»>¢ isnotallowed unless Aisa start symbol. It does not ocour
on the right hand side of any rule.

The classic example of context sensitive languageis £ = {a" #* ¢” {n 2 1} . Thecontext sensitive

graramar can be writtenas :

aBC
SABC
AC
AB
BC

a4

ab

bb

be

ce

CB

bB
bC
cC

I T R R R E

Now to derive the string aabbee we will start from start symbol :
s mleS - SARC
SABC mle§ —» aBC
aBCABC rule CA —» AC
aBACBC rule CB -5 BC
aBABCC ruleBA AB
aABBCC ruleaA -y aa
aaBBCC muleaB ab
aahBCC rulebB - bb
aabbCC mlebC - be
aabbeC rulecC - ce
aabbee

AUTOMATA THEORY AND COMPILER DESIGN

Page127

Note : The language " »" " where ;> 1 isrepresented by context sensitive grammar but it
cannot berepresented by context free grammar,

Every context sensilive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the fopic of LR (k) grammar, let us discuss abowut some concepts which will be
helpful understandingit,

[in the umit of context free grammars you have seen that to check whether a particular string is
accepted by a particular grammar or not we try to derive that sentence using rightmost derivation
or leftmost derivation. Ifthat string is derived we say that it is a valid string,

Example :

E—>E+T|T
T T*F|F
Fosid | (E)

Suppose we want to check validity of a string id +id * id . Its rightmost derivationis
£ = E+T
E+T*F
E+T*id
E+ F¥id
E+id*id
Tvid*id
F+id*id
id + id *id

prvan]
=
>
et
=
=
=

FIGURE(a) : Rightmost Derivationof id +id * id

Since this sentence is derivable using the given grammar. Itisa valid string. Here we have checked
the validity of string using process known as dezivation.

AUTOMATA THEORY AND COMPILER DESIGN

Page128

Inreduction process we have seen that we repeat the process of substitution until we get starting
state. But some times several choices may be available for replacement. In this case we have to
backtrack and try some other substring . For certain grammars it is possible to carry out the
process in deterministic. {i. e., having only one choice at each time). LR grammars form one
such subclass of context free grammars. Depending on the number of look ahead symbolized to
determine whether a substring must be replaced by a non terminal or not, they are classified as
LR, LR(}).... and in general LR(K) gratmmars.

LR(K) stands for left to right scanning of inpui string using rightmost derivation in reverse
order { we say teverse order because we use reduction which is reverse of derivation } using
look ahead ofk synibols.

8.4.1 LR(0) Grammar

LR(0) stands for left to right scanning of input string using rightmost derivation in reverse order
using 0 look ahead symbols, '

Before defining LR(0) grammars, let us knowabout few terms.

Prefix Property : Alanguage Lis said to have prefix property if whenever win L, no proper
prefix of wis in L. By introducing marker symbol we canconvert any DCFL to DCTL with prefix

property. Hence I$ = { w$|w e L} isa DCFL with prefix property whenever wis inL.
Exampie : Consider a language L= { cat, cart, bat, art, car } . Here, we can see that sentence
cartis in Land its one of the prefixes car is also is in L. Hence, it is not satisfying property. But
1% ={cat$,cart$, bat$ art§,car§ }

Here, cart $ is in L$ but its prefix cart or car are not present in L$. Similarly no proper prefix is
present in L. Hence, it is satisfying prefix property.

Note : LR(0) grammar generates DCFL and every DCFL with prefix property has a LR(0)
graminar.

LR ftems

Anitem for a CFG isa production with dot any where in right side including beginning orend. In
case of ¢ production, suppose 4—> € 4—» . isanitem.

AUTOMATA THEORY AND COMPILER DESIGN

Page129

Computing Valid Hem Sets

The main ideahere is to construct from a given gramimar 2 detersinistic finite antomata to recognize
viable prefixes. We group items together into sets which give to states of DFA. The iterns may be
viewed as states of NFA and grouped items may be viewed as states of DFA obtained using
subset construction algorithm.

To compute valid set of ftems we use two operations goto and closure.
Closure Operation

TtTis asetof items for a grammar (3, then closure (T} is the set of items constructed from Iby two
rules. . ;
1. Initially, every item is added to closure (1),
2. If 4 - BA isinclosure (Qand B . § is productionthen add item g § tolifitis
not already there. We apply this rule until ne more new iterns can be added to closure (I).

Example : Forthe grammar,

§ - §
S > cdd
4 - a

If & - § issctofoneiteminstatethenclosure of Tis,
L: 8 = 5

S = eAD

The first item isadded usingrule 1 and § —» .cAd is added using rule 2. Because ' . 'is

followed by nonterminal 5 we add items having SinLHS.In § — c4d '.'isfollowed by
terminal so 1o new item is added.

Goto Function : It is written as goto (L, X) where Lis set of items and X is grammar symbol.

If A —» . X isinsome item set I then goto (I, X) will be closure of set of all items 4 - o X 5.

AUTOMATA THEORY AND COMPILER DESIGN

Page130

FIGURE(a) : DFA whose States are the Sets of Valid ltems

Definition of LR(0) Grammar : We say G is an LR (0) grammar if,

1. Its start symbol does not appear on the right hand side of any production and

2. Foreveryviable prefix y of G whenever 4 —a is a complete item valid for ¥ , thenno
ather complete ftem nor any item with terminal to the right of the dot is valid for 7 .

Condition 1 : For a grammar to be LR(0) it should satisfy both the conditions. The first

condition can be made to satisfy by all grammars by introduction of a new production 8'— 8§ 8

kmown angmented grammar.

Condition 2 : Forthe DFA shown in Figure(s), the sccond condition is also satisfied because

inthe jtem sets /,, 7, and ; each containinga complete item, there areno other complete items

nor any other contlict.

Example : Consider the DFA given in figure(b).

FIGURE(b) : DFA for the given Grammar

AUTOMATA THEORY AND COMPILER DESIGN

Pagel131

Tach problem P is a pair consisting of a setand a question, where the question can be applied to
each element in the set, The set is called the domain of the problem, and its elements are called
the instances of the problem.

Example :

Domain = { All regular languages over some alphabet 3, s
Instance : L={w:wisawordover g endinginabb},
Question : Is union of two regular languages regular ?

251 Decidable and Undecidable Problems

A problem is said to be decidable if
1. Ttslanguage is recussive, or
2. Tthes solution

Other problems which do not satisfy the above are undecidable. We restrict the answer of
decidable problems to " YES™ or "NO" . If there is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "NO" but not both. Restricting the answers to only
"YES" or "NO™ we may not be able to cover the whole problems, still we cancovera lotof
probiems. One question here, Why weare restricting our answers to only "'YES" or "NO™? The
answer is very simple ; we want the answers as simple as possible.

Now, we say " If for a problem, there exists an algorithin which tells that the answer is either
*YES" or "NO" then problem is decidable.”

If for a problem both the answers are possible ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidable Problems for FA, Regular Grammars and Regular Languages

Some decidable problems are mentioned below :

1. Does FAacceptregular language ?

2. Isthe power of NFA and DFA same ?

3. I, and I, are two regular languages. Are these closed undet following :
(@ Unon
(b) Concatenation
(c) Intersection
@) Complement

AUTOMATA THEORY AND COMPILER DESIGN

Page132

6. Wehave following co - theorem based on above discussion for recursive enumerable and
recursive languages,

LetLand T are two languages, where 7 the complement of L, then one of the following
istrue:

(2) Both1.and ¥ arerecursive languages,

() Neither Lnor T isrecursive languages,

(¢) If L is recursive enumerable but not recussive, then 7 isnotrecursive enumerable and
vige versa. :

Undecidable Problems about Turing Machines

In this section, we will first discuss about halting problem in general and then about ™.
Halting Problem (HP)

The halting problem is 2 decision problem which is informally stated as follows:

"(iivena description of an algorithm and adescription of ifs initial arguments, determine whether
the algorithm, when executed with these atguments, ever haits. The alternative is thata given
algorithm runs forever without halting.”

Alan Tuting proved in 1936 that there is no general method or algorithm which can solve the
halting problem for all possible inputs, An algorithm may coitain loops which may beinfinite or
finite in length depending onthe inputand behaviour of the algorithm . The amount of work done
in an algorithm usually depends on the input size. Algorithms may consist of various number of
loops, nested orin sequence. The HP asks the question :

Given a program and an input o the program, determine if the program will eventually stop when
itis given that mput 7

One thing we can do here fo find the solution of HP. Let the program run with the given input and
ifthe program stops and we conclude that problem is solved. But, ifthe program doesn't stop in
areasonable amount of time, we can not conclude that it won't stop, The questionis: "how long
we canwait ... 7' . The waiting time may be long enough to exhaust whole life. Se, we can ot
take it as eagier as it seems to be. We want specific answer, either "YES" or "NO", and hence
some algorithm to decide the answer.

AUTOMATA THEORY AND COMPILER DESIGN

Page133

Now, we analyse the following :
1. If H outputs "YES" and says that Q halts then Q itsell would loop (that's how we
constructed it}
2. IfHoutputs "NO" and says that Q loops then Q outpits "YES” and will halts,
Since, ineither case H gives the wrong answer for Q. Therefore, i cannot work inall cases
and hence can't answer right for all the inputs. This confradicts our assumption made earlier for
HP Hence, HPisundecidable.

Theorem ; HP of TM is undecidable.
Proof : HP of TM means to decide whether or nota TM halts for some input w. We can prove
this following the similar steps discussed in above theorern.

2.6 UNIVERSAL TURING MACHINE

The Church - Turing thesis conjectured that anything that can be done on any existing digital
computer can also be done by a TM. To prove this conjecture. A. ML Turing was able fo construct
a single TM which is the theoretical analogue of a general purpose digital computer. This machine
is called a Universal Turing Machine (UTM). He showed that the UTM is capable of initiating
the operation of any other TM, that is, it is a reprogrammable TM. We can definethis machine in
more formal way as follows

Definition : A Universal Turing Machine denoted as UTM) isa TM that cantake as input an
arbitrary TM 7, with anarbitrary input for 7, and then perform the executionof 7, onitsinput.

What Turing thus showed that a single TM can acts like a general purpose computer that stores
aprogram and its data in memory and then executes the program. We can describe UTM asa3

- tape TM where the description of TM, T, and its nput string x e 4" are stored initially on the

firsttape, 1,. The second tape, ¢, used to hold the simulated tape of 7, , using the same format
as used for describing the TM, 7, . The third tape,, ¢, holds the state of T,

!
] = [~

Clesceipition of Ta with its inpulx

Controk
Uit o b

af LM ;

“Tape contents of Ta

satenl Ta

AUTOMATA THEORY AND COMPILER DESIGN

Page134

Now, suppose that a Turing machine, T, , is consisting of a finite number of configurations,
denoted by, ¢, G. €31es €, and let &, G Tys-es €, represent the encoding of them. Then, we
can define the encoding of 7', as follows :

*T BT B EH
Here, * and # are used only as separators, and cannot appeat elsewhere. We use apairof *'sto
enclose the encoding of each configuration of TM, T, .

The case where 8(s,a) is undefined can be encoded as follows :

#7008 #
where thesymbols 5, 7 and 7 stand for the encoding of symbols, s, aand B (Blank character),
respectively.

Working of UTM

Given a description of a TM, T, and its inputs representation on the UTM tape, 4, and the
starting symbol ontape , 1, the UTM starts executing the quintuples of the encoded TM as
follows:
1. The UTM getsthe cutrent state from tape, £, and the cutrent input symbol from tape 1, .
2. then, it matches the current state - symbol pair to the state symbol pairs in the program listed
ontape, f,.
if no match oceurs, the UTM halts, otherwise it eopies the next state into the current state
cell of tape, 1,, and perform the cotresponding write and move operations on tape, #,.
ifthe camrent state on tape, 7, is the halt state, then the UTM halts, otherwise the UTM goes
back to step 2.

8.7 POST'S CORRESPONDENCE PROBLEM (PCP)

Post's correspondence problem is a combinatorial problem formulated by Emil Post in 1946.
This problem has many applications in the field theory of formal languages.

Definition :

Acorrespondence system P is a finite set of ordered pairs of nonempty strings over somealphabet.

AUTOMATA THEORY AND COMPILER DESIGN

Page135

Here, u, =5, u; =a, u; =abe, py=ca, v,=ab, ty=c.

Wehaveaselution w=u) = 0 =abea -

8.8 TURING REDUCIBILITY
Reduction is a technigue in which if a problem A is reduced to problem 1B then any solution of B

solves A. In general, if we have an algorithm to convert some instance of problem A fo some
instance of problem B that have the same answer then it is called Areduces to B.

FIGURE: Reduction

Definition : Let Aand B be the two sets such that 4, B < N of natural numbers, Then A s
Turing reducible to B and denotedas A<, B.

Tfthere is an oracle machine that computes the characteristic function of A when it is executed
with oracle machine for B.

This is also called as Ais B - recursive and B - computable. The oracle machine is an abstract
machine used to study decision problem. It is also called as Turing machine with blackbox.

We say that Ais Turing equivalentto Bandwrite 4 =, Bif A5, Band B2, 4.
Properties :

1, Every setis Turing equivalent to its complement.

2. Bvery computable set is Turing equivalent to every other computable set.

3. A<, BRand B, Cthen 4%, B.

8.9 DEFINITION OF P AND NP PROBLEMS

A problem is said to be solvable if it has an algorithm to solve it. Problems can be categorized
into two groups depending on time taken for their exeention.

AUTOMATA THEORY AND COMPILER DESIGN

Page136

i. The problems whose solution times are bounded by polynomials of small degree.
Example: bubble sort algorithm obtains n numbers in sorted order in polynomial time

P(n)=n" —2n+1 wheren is the length of input. Hence, it comes under this group.

Second group is made up of problems whose best known algotithm are non polynomial
exarmple, fravelling salesman problem has complexity of O(n? 2"y which is exponential.
Hence, itcomes under this group.

Aproblem can be solved if there is an algorithm to solve the given problem and time required is
expressed as & polynomial p(n), n being length of input string. The problens of first group are of
thiskind.

The problems of second group require large amount of time to execute and even require moderate

size so these problems are difficult to solve, Hence, problems of first kind are tractable or easy
and problems of second kind are intractable orhard.

8.9.1 P-Problem

P stands for deterministic polynomial time. A deterministic machine at each time executes an
instruction, Depending on instruction, it then goes to next state which is wnigue,

Henee, time complexity of deterministic TM is the maximum number of moves made by Mis
processing any input swing of lengthn, tzken over all inputs of length n.

Definition : Alanguagel.issaid tobe in class Pif there exists a (deterministic) TM M such
that M is of time complexity P(n) for some polynomial P and M accepts L.
Class P consists of those problem that are solvable in polynomial time by DTM.

8.9.2 NP -Probiem

NP stands for nondeterministic polynomial time.

The class NP consists of those problems that are verifiable in polynomial time. What we mean
here is fhat if we are given ceriificate of a solution then we can verify that the certificate is correct
in polynomial ime in size of input problem.

AUTOMATA THEORY AND COMPILER DESIGN

Page137

8.10 NP - COMPLETE AND NP - HARD PROBLEMS

A problem S is said to be NP- Complete problem if it satisfies the following two conditions.
1. §eNP,and

2. For every other problems §, e NP for some =1, 2, n, there is polynomial ~ time
transformation from S, f0 8 i.e. everyprobleminNP class polynormial -timereducibleto S.
‘We conclude one thing here that if §, is NP -complete then S is also NP - Complete.

As aconsequence, if we could find a polynomial time algorithm for S, then we can solve all NP
problems in polynomial time, because all problems in NP class are polynomial - time reducible to
each other.

"A problem P is said to be NP - Hard if it satisfies the second condition as NP ~ Complete, but
not necessarily the first condition ..

The notion of NP - hardness plays an important role in the discussion about the relationship
between the complexity classes Pand NP It is also often used to define the complexity class NP
- Complete which is the intersection of NP and NP - Hard. Consequently, the class NP - Hard
can be understood as the class of problems that are NP - complete or harder.

Example : AnNP- Hard problem is the decision problem SUBSET - SUM whichis as follows.

" Given a set of integers, do any non empty subset of them add up to zero? Thisisa yes/no
question, and happens to be NP - complete ".

There are also decision problems that are NP - Hard but not NP - Complete , for example, the
halting problem of Turing machine. It is easy to prove that the halting problem is NP - Hard but
not NP - Complete. It is also easy to see that haiting problem is not in NP since all problems in
NP are decidable but the halting problem is not{ voilating the condition first given for NP -
complete languages).

I: Complexity theory, the NP - complete problerns ate the hardest problems in NP class, in the
sense that they are the ones most likely not to be in P class. The reason is that if we could find a
way to solve any NP - complete problem guickly, then you could use that algorithm to solve all
NP problerns quickly.

Atpresenttime, all known algorithms for NP - complete problems require time which is exponential
in the input size. It is unknown whether there are any faster algorithms for these arenot.

AUTOMATA THEORY AND COMPILER DESIGN

Pagel38

UNIT-IV

INTRODUCTION TO LANGUAGE ROCESSING:

AsComputersbecameinevitableandindigenouspartothumanlife,andseverallanguages

withdifferentandmoreadvancedfeaturesareevolvedintothisstreamtosatisfyorcomforttheuser

in

communicating with the machine , the development of the translators or mediator Software‘s

have become essential to fill the huge gap between the human and machine understanding. This

process is called Language Processing to reflect the goal and intent of the process. On the wayto

this process to understand it in a better way, we have to be familiar with some key terms and

concepts explained in following lines.

LANGUAGETRANSLATORS:

Is a computer program which translates a program written in one (Source) language to its

equivalentprograminother| Target]language. TheSourceprogramisahighlevellanguagewhereas

the

Target language can be any thing from the machine language of a target machine (between

Microprocessor to Supercomputer) to another high level languageprogram.

2. TwocommonlyUsed Translators areCompilerandInterpreter

1. Compiler: Compilerisaprogram,readsprograminonelanguagecalledSourcelLanguage
andtranslatesintoitsequivalentprograminanotherLanguagecalledTargetLanguage,in
addition to this its presents the error information to the User.

Source program in
one language or
high level
Language

1

An Equivalent Program in

COMPILER ., other Language or

Relocatable Object Code

|

or Target Program

Error Information

Y. Ifthetargetprogramisanexecutablemachine-languageprogram,itcanthenbecalledby the

users to process inputs and produce outputs.

Input ——»| TargetProgram

— Output

Figurel.1l:RunningthetargetProgram

AUTOMATA THEORY AND COMPILER DESIGN

Pagel39

2. Interpreter:Aninterpreterisanothercommonlyusedlanguageprocessor.Insteadofproducing a
target program as a single translation unit, an interpreter appears to directly execute the
operations specified in the source program on inputs supplied by theuser.

Source Program ——»)
—> ’
Input Interpreter Output

Figurel.2:RunningthetargetProgram

LANGUAGE PROCESSING SYSTEM:

Basedontheinputthetranslatortakesandtheoutputitproduces,alanguagetranslatorcanbe called as
any one of the following.

Preprocessor: Apreprocessortakestheskeletalsourceprogramasinputandproducesanextended
version of it, which is the resultant of expanding the Macros, manifest constants if any, and
includingheader files etc in thesourcefile. For example, the C preprocessor is amacro processor
thatisusedautomaticallybytheCcompilertotransformoursourcebeforeactualcompilation.Over and
above a preprocessor performs the following activities:

2. Collectsallthemodules, filesincaseifthesourceprogramisdividedintodifferentmodules stored
at different files.

2. Expandsshorthands/ macrosintosourcelanguagestatements.

Compiler: Is a translator that takes as input a source program written in high level language and
convertsitintoitsequivalenttarget programinmachinelanguage.Inadditiontoabovethecompiler also

2 Reportstoitsuserthepresenceoferrorsinthesourceprogram.
> Facilitatestheuserinrectifyingtheerrors,andexecutethecode.

Assembler:Isaprogramthattakesasinputanassemblylanguageprogramandconvertsitintoits equivalent
machine language code.

Loader/Linker:Thisisaprogramthattakesasinputarelocatablecodeandcollectsthelibrary functions,
relocatable object files, and produces its equivalent absolute machine code.

Specifically,

2 Loadingconsistsoftakingtherelocatablemachinecode,alteringtherelocatableaddresses, and
placing the altered instructions and data in memoryat the proper locations.

2 Linking allows us to make a single program from several files of relocatable machine code.
These files may have been result of several different compilations, one or moremaybe
libraryroutines provided bythe system available to any program that needs them.

AUTOMATA THEORY AND COMPILER DESIGN Page140

In addition to these translators, programs like interpreters, text formatters etc., may be used in
language processing system. To translate a program in a high level language program to an

executable one, the Compiler performs by default the compile and linking functions.

Normally the steps in a language processing system includes Preprocessing the skeletal Source
program which produces an extended or expanded source program or a ready to compile unit of
the source program, followed by compiling the resultant, then linking / loading , and finally its

equivalent executable code is produced. As I said earlier not all these steps are mandatory. In

some cases, the Compiler only performs this linking and loading functions implicitly.

The steps involved in a typical language processing system can be understood with following

diagram.

SourceProgram [Example:filename.C]

R

ModifiedSourceProgram [Example:filename.C]

Compiler

TargetAssemblyProgram

|

Assembler
RelocatableMachineCode[Example:filename.obj]

!

Loader/Linker <«—Library files

l RelocatableObjectfiles

TargetMachineCode [Example:filename.exe]

Figurel.3:ContextofaCompilerinLanguageProcessingSystem

AUTOMATA THEORY AND COMPILER DESIGN

Pagel41

PHASES OF A COMPILER:

Due to the complexity of compilation task, a Compiler typically proceeds in a Sequence of
compilation phases. The phases communicate with each other via clearly defined interfaces.
Generally an interface contains a Data structure (e.g., tree), Set of exported functions.Each phase
works on an abstract intermediate representation of the source program, not the source
program text itself (except the first phase)

Compiler Phases are the individual modules which are chronologicallyexecuted to perform their
respective Sub-activities, and finally integrate the solutions to give target code.

It is desirable to have relatively few phases, since it takes time to read and write immediate files.
Followingdiagram (Figurel.4) depicts the phases of a compiler through which it goes duringthe
compilation. There fore a typical Compiler is having the following Phases:

1.LexicalAnalyzer(Scanner),2.Syntax Analyzer(Parser),3.SemanticAnalyzer,
4.Intermediate Code Generator(ICG), 5.Code Optimizer(CO) , and 6.Code
Generator(CG)

In addition to these, it also has Symbol table management, and Error handler phases. Not all
the phases are mandatory in every Compiler. e.g, Code Optimizer phase is optional in some

cases.
Thedescription isgiven innext section. The Phases of compiler divided in to two parts, first three phases
we are called as Analysis part remaining three called as Synthesis part.

AUTOMATA THEORY AND COMPILER DESIGN Page142

Somce program

Lexical analyser

!

Syutax analyser

'

Semantic analyser

Svinbol-table manager * Ervor handlex

Internmediate
code generator

!

Code optumiser

'

Code generator

v

Target progiam

Figurel.4:PhasesofaCompiler

PHASE,PASSESOFACOMPILER:

In some application we can have a compiler that is organized into what is called passes.
Where a pass is a collection of phases that convert the input from one representation to a
completely deferent representation. Each pass makes a complete scan of the input and produces

its output to be processed by the subsequent pass. For example a two pass Assembler.

AUTOMATA THEORY AND COMPILER DESIGN Page143

THEFRONT-END& BACK-ENDOFACOMPILER

All of these phases of a general Compiler are conceptually divided into The Front-end,
and The Back-end. This division is due to their dependence on either the Source Language orthe
Target machine. This model is called an Analysis & Synthesis model of a compiler.

The Front-end of the compiler consists of phases that depend primarily on the Source
language and are largely independent on the target machine. For example, front-end of the
compiler includes Scanner, Parser, Creation of Symbol table, Semantic Analyzer, and the

Intermediate Code Generator.

The Back-end of the compiler consists of phases that depend on the target machine, and
thoseportionsdon‘tdependentontheSourcelanguage,justthe Intermediatelanguage.Inthiswe have
different aspects of Code Optimization phase, code generation along with the necessary Error

handling, and Symbol table operations.

LEXICAL ANALYZER(SCANNER):TheScanneristhefirstphasethatworksasinterface
betweenthe compilerandtheSourcelanguageprogramandperformsthefollowingfunctions:

2 Reads the characters in the Source program and groups them into a stream of tokens in
which each token specifies a logically cohesive sequence of characters, such as an
identifier , a Keyword , a punctuation mark, a multi character operator like := .

2. Thecharactersequenceformingatoken iscalledalexemeofthetoken.

TheScannergeneratesatoken-id,andalsoentersthatidentifiersnameintheSymbol table if
it doesn‘t exist.

2. Alsoremoves theComments, and unnecessaryspaces.

Theformat ofthetoken is < Tokenname, Attributevalue>

SYNTAX ANALYZER(PARSER):TheParserinteractswiththeScanner,anditssubsequent phase
Semantic Analyzer and performs the following functions:

2. Groupstheabovereceived,andrecordedtokenstreamintosyntacticstructures,usually into a
structure called Parse Tree whose leaves are tokens.

2. Theinteriornodeofthistreerepresentsthestreamoftokensthatlogicallybelongs

AUTOMATA THEORY AND COMPILER DESIGN Page144

together.
2. Itmeansitchecksthesyntax ofprogramelements.

SEMANTICANALYZER: This phase receives the syntax tree as input, and checksthe
semanticallycorrectnessoftheprogram.Thoughthetokensarevalidandsyntacticallycorrect, it

may happen that they are not correct semantically. Therefore the semantic analyzer checks
thesemantics (meaning) of the statements formed.

2. TheSyntacticallyandSemanticallycorrectstructuresareproducedhereintheformofa Syntax
tree or DAG or some other sequential representation like matrix.

INTERMEDIATE CODE GENERATOR(CG): This phase takes the syntactically and
semantically correct structure as input, and produces its equivalent intermediate notation of the
source program. The Intermediate Code should have two important properties specified below:

2. TItshouldbeeasytoproduce,andEasytotranslateintothetargetprogram.Example
intermediate code forms are:

Y. Threeaddress codes,
>, Polishnotations,etc.

CODE OPTIMIZER: This phase is optional in some Compilers, but so useful and beneficial in
terms of saving development time, effort, and cost. This phase performs the following specific
functions:

Y Attempts to improve the IC so as to have a faster machine code. Typical functionsinclude —
Loop Optimization, Removal of redundant computations, Strength reduction, Frequency
reductions etc.

2. Sometimesthedatastructuresusedinrepresentingtheintermediateformsmayalsobe
changed.

CODE GENERATOR: This is the final phase of the compiler and generates the target code,
normally consisting of the relocatable machine code or Assembly code or absolute machinecode.

2. Memorylocationsareselectedforeachvariableused,andassignmentofvariablesto
registers is done.

2. Intermediateinstructionsaretranslatedintoasequenceofmachine instructions.

TheCompileralsoperformstheSymboltablemanagementandErrorhandlingthroughoutthe
compilation process. Symbol table is nothing but a data structure that stores different source

AUTOMATA THEORY AND COMPILER DESIGN Page145

language constructs, and tokens generated during the compilation. These two interact with all
phases of the Compiler.

AUTOMATA THEORY AND COMPILER DESIGN

Pagel46

Forexamplethesourceprogramisanassignmentstatement;thefollowingfigureshowshowthe phases of
compiler will process the program.

Theinput sourceprogram isPosition=initial+rate*60

position = imitial * rate = 60
- v
[Lexical Analyzer]
v
{id, 1) (=) Gd, 2) (+) (id, 3) (=) {(60)
" Y

! Svuntax A}n_a_n._.l__vzcr j
— — ’
(id, 1) ot
Ga, 2y S
Gd, 35 " 60
A

[. Semantic A—t;nlyzer I
R -
a1y 2

Ga, 2y I
(id. 3) inttofloat

! Intermediate Code Generator]

t1l = inttofloat{(60)

t2 = 343 ¢ t1A

t3 = id2 + t2

idl = +3

¥ R———

‘_‘ Code ()ptiTnim |

Tl = id3 = 60.0
idl = 3id2 + t1

l Code Generator
v

LDF R2, id3

MULF R2, R2, 8#60.0

LDF R1, id2

ADDF R1, R1,., R2

STF idi, R1

Figurel.5:TranslationofanassignmentStatement

AUTOMATA THEORY AND COMPILER DESIGN Page147

LEXICALA NALYSIS:

As the first phase of a compiler, the main task ofthelexical analyzeristo read the input
characters of the source program, group them into lexemes, and produce as output tokens for
each lexeme in the source program. This stream of tokens is sent to the parser for syntax analysis.
It is common for the lexical analyzer to interact with the symbol table as well.

When the lexical analyzer discovers a lexeme constituting an identifier,it needstoenter
that lexeme into the symbol table. This process is shown in the followingfigure.

token
source Lexical - to semantic
— Parser —— .
program Analyzer | analysis
getNextToken
Symbol
Table

Figurel.6:LexicalAnalyzer

When lexical analyzer identifies the first token it will send it to the parser, the parser
receives the token and calls the lexical analyzer to send next token by issuing the getNextToken()
command. This Process continues until the lexical analyzer identifies all the tokens. During this
process the lexical analyzer will neglect or discard the white spaces and comment lines.

TOKENS,PATTERN SAND LEXEMES:

A token is a pair consisting of a tokennameandan optional attribute value.The token name is an
abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a sequence of
input characters denoting an identifier. The token names are the input symbols that the parser
processes. In what follows, we shall generally write the name of a token in boldface. We will
often refer to a token by its token name.

A pattern is a description of the form that the lexemes of a token may take [or match]. In the
case of a keyword as a token, the pattern is just the sequence of characters that form the keyword.
For identifiers and some other tokens, the pattern is a more complex structure that is matched by

many strings.

AUTOMATA THEORY AND COMPILER DESIGN Page148

Alexemeisasequenceofcharactersinthesourceprogramthatmatchesthepatternfora token and is identified by the
lexical analyzer as an instance of that token.

Example:InthefollowingClanguagestatement, printf

("Total = %d\nl, score) ;

both printf and scoreare lexemes matchingthepatternfortokenid, and "Total=%d\n|| is a

lexeme matching literal [or string].

TOKEN INFORMAL DESCRIPTION SAMPLE LEXEMES
if characters i, f if
else characters e, 1, s, e else
comparison | <or > or <= or >= or == or != <=, I=
id letter followed by letters and digits | pi, score, D2
number any numeric constant 3.14159, 0, 6.02e23
literal anything but ", surrounded by "’s

"core dumped"

Figurel.7:ExamplesofTokens

LEXICAL ANALYSIS Vs PARSING:

Thereareanumberofreasonswhytheanalysisportionofacompilerisnormallyseparatedinto lexical

analysis and parsing (syntax analysis) phases.

>1. Simplicity of design is the most important consideration. The separation of Lexical
and Syntactic analysis often allows us to simplify at least one of these tasks. Forexample,
a parser that had to deal with comments and whitespace as syntactic unitswould be
considerably more complex than one that can assume comments andwhitespace have
already been removed by the lexicalanalyzer.

22. Compiler efficiency is improved. A separate lexical analyzer allows us to apply
specialized techniques that serve only the lexical task, not the job of parsing. In addition,
specialized buffering techniques for reading input characters can speed up the compiler

significantly.X.

3.Compilerportabilityisenhanced:Input-device-specificpeculiaritiescanbe restricted to
the lexical analyzer.

AUTOMATA THEORY AND COMPILER DESIGN

Page149

INPUTBUFFERING:

Before discussing the problem of recognizinglexemesin the input,let us examine some
ways that the simple but important task of reading the source program canbe speeded. This task
is made difficult by the fact that we often have to look one or more characters beyond the next
lexeme before we can be sure we have the right lexeme. There are many situationswhere we need
to look at least one additional character ahead. For instance, we cannot be sure we've seen the
end of an identifier until we see a character that is not a letter or digit, and therefore is not part of
the lexeme forid.InC, single-characteroperators like-,=,or< could also be the beginning of a two-
character operator like ->, ==, or <=. Thus, we shall introduce a two-buffer scheme that handles
large look aheads safely. We then consider an improvement involving "sentinels" that saves time
checking for the ends of buffers.

Buffer Pairs

Because of the amount of time taken to process characters and the large number of charactersthat
must be processed during the compilation of a large source program, specialized buffering
techniques have been developed to reduce the amount of overhead required to process a single
input character. An important scheme involves two buffers that are alternately reloaded.

£ = mefesi+lzer
T forward
lexemeBegin

Figurel.8 :UsingaPairof InputBuffers

Each buffer is of the same size N, and N is usually the size of a disk block, e.g., 4096
bytes. Using one system readcommand we canread Ncharacters in to a buffer, rather than using
one system call per character. If fewer than N characters remain in the input file, then a special
character, represented by eof, marks the end of the source file and is different from any possible
character of the source program.

2. Twopointers tothe inputaremaintained:

1. ThePointerlexemeBegin,marksthebeginningofthecurrentlexeme,whoseextent we
are attempting to determine.

2. Pointer forward scans ahead until a pattern match is found; the exact strategy
wherebythisdeterminationismadewillbecoveredinthebalanceofthischapter.

AUTOMATA THEORY AND COMPILER DESIGN Pagel50

Once the next lexeme is determined, forward is set to the character at its right end. Then,
after the lexeme is recorded as an attribute value of a token returned to the parser, lexemeBegin
is set to the character immediatelyafter the lexeme just found. In Fig, we see forward has passed
the end of the next lexeme, ** (the FORTRAN exponentiation operator), and must be retracted

one position to its left.

Advancing forward requires that we first test whether we have reachedthe end ofoneof
the buffers, and if so, we must reload the other bufferfromthe input, and move forward to the
beginning of the newly loaded buffer. As long as we never need to look so far ahead of the actual
lexeme that the sumof the lexeme'slengthplusthe distance welookahead isgreater than N, we shall

never overwrite the lexeme in its buffer before determining it.

SentinelsTolmproveScanners Performance:

If we use the above scheme as described, we must check, each time we advance forward,
that we have not moved off one of the buffers; if we do, then we must also reload the other buffer.
Thus, for each character read, we make two tests: one for the end of the buffer, and oneto
determine what character is read (the latter may be a multi way branch). We can combine the
buffer-end test with the test for the current character if we extend each buffer to hold a sentinel
character at the end. The sentinel is a special character that cannot be part of the source program,
and a natural choice is the character eof. Figure 1.8 shows the same arrangement as Figure 1.7,
but with the sentinels added. Note that eof retains its use as a marker for the end of the entire

input.

Ei i=: IMitleoffCi¥i% 2%f © © | leof
T forward
lexemeBegin

Figurel.8:Sententialattheendof eachbuffer

Anyeofthatappearsotherthanattheendofabuffermeansthattheinput isatanend.Figure1.9
summarizes the algorithm for advancing forward. Notice how the first test, which can be part of

AUTOMATA THEORY AND COMPILER DESIGN Pagel51

amultiwaybranchbased onthecharacterpointedtobyforward,istheonlytestwemake,except in the
case where we actually are at the end of a buffer or the end of the input.

switch(*forward++)

{

caseeof:if(forwardisatendof firstbuffer)

{

reloadsecondbuffer;

forward=beginningofsecond buffer;
}

elseif (forwardisatend of secondbuffer)

{

reloadfirst buffer;

forward=beginningof first buffer;

else /*eofwithinabuffermarkstheendofinput®/
terminate lexical analysis;

break;

Figurel.9:useof switch-caseforthesentential

AUTOMATA THEORY AND COMPILER DESIGN

Pagel52

SPECIFICATIONOF TOKENS:

Regular expressions are an important notation for specifying lexeme patterns. While they cannot express
allpossiblepatterns,theyareveryeffectiveinspecifyingthosetypesofpatternsthat weactuallyneedfor tokens.

LEXtheLexicalAnalyzer generator

Lex is a tool used to generate lexical analyzer, the input notation for the Lex tool is
referred to as the Lex language and the tool itself is the Lex compiler. Behind the scenes, theLex
compiler transforms theinputpatterns into a transition diagram and generates code, in a
filecalledlex.yy.c,itisacprogramgivenforCCompiler,givestheObjectcode.Hereweneed to know
how to write the Lex language. The structure of the Lex program is givenbelow.

Structureof LEXProgram: A Lex programhasthefollowingform:

Declarations
%%
Translation rules
%%

Auxiliaryfunctionsdefinitions
Thedeclarationssection:includesdeclarationsofvariables,manifestconstants(identifiers
declaredtostandforaconstant,e.g.,thenameofatoken),andregulardefinitions.Itappears
between %{. . .%}

IntheTranslationrulessection, WeplacePatternActionpairswhereeachpairhavetheform Pattern
{Action}

Theauxiliaryfunctiondefinitionssectionincludesthedefinitionsoffunctionsusedtoinstall
identifiers and numbers in the Symbol tale.

LEXProgramExample:
%{

/*definitionsofmanifestconstantsLT,LE,EQ,NE,GT,GE,IF, THEN,ELSE,ID,NUMBER,
RELOP */

%}

/*regulardefinitions */

delim [\t\n]

then

Ws { delim}+

letter [A-Za-7]

digit [0-91

Id {letter} ({letter} |{digit})*

number {digit}+(\. {digit}+)?(E[+-1]?{digit}+)?
%%

{ws} {/*no actionand noreturn */}

If {return(1F);}

{return(THEN); }

else {return(ELSE);}

(id) {yylval=(int)installID(); return(1D);}

(number) {yylval=(int)instalINum();return(NUMBER); }
I<lI {yylval=LT; return(RELOP);)}

-<=| {yylval=LE; return(RELOP);}

— {yylval=EQ;return(RELOP);}

—<>| {yylval= NE;return(RELOP);}
—< {yylval=GT;return(RELOP);)}
—<= {yylval=GE;return(RELOP);}
%%

intinstallIDO() {/*functionto installthelexeme,whosefirstcharacterispointedtobyyytext, and
whose length is yyleng, into the symbol table and return apointer thereto */
intinstallNum() {/*similartoinstallID,butputsnumericalconstantsinto aseparatetable*/}

Figurel.10:LexProgramfortokenscommontokens

SYNTAX ANALYSIS(PARSER)
THEROLEOFTHE PARSER:

In our compiler model, the parser obtains astring oftokens fromthelexical analyzer, as
shown inthe below Figure,and verifiesthatthestringoftoken names canbe generated by
thegrammarforthesource language.We expect the parser to report any syntaxerrors in an
intelligible fashion and to recover from commonlyoccurring errors to continue processing the
remainder of the program. Conceptually, for well-formed programs, the parser constructs a parse
tree and passes it to the rest of the compiler for further processing.

token ' | . .
source | Lexical - | parse | Rest of intermediate
— Parger 4“-=-~-o -
program | Analyzer (- ' tree ! Front End [representation
get next ! ;

token A

Y

Symbol
Table

Figure2.1:Parserin theCompiler

Duringtheprocessofparsingitmayencountersomeerrorandpresenttheerrorinformationback to the
user

Syntacticerrorsincludemisplacedsemicolonsorextraormissingbraces;thatis,
—{" or "}."Asanother example, in CorJava,the appearance ofacasestatementwithout anenclosing
switchisasyntactic error(however,thissituationisusually allowedbythe parser and caught later in
the processing, as the compiler attempts to generate code).

Basedontheway/ordertheParseTreeisconstructed, Parsingisbasicallyclassifiedinto following
two types:

1. TopDownParsing:Parsetreeconstructionstartattherootnodeandmovestothe
children nodes (i.e., top down order).

2. BottomupParsing:Parsetreeconstructionbeginsfromtheleafnodesandproceeds
towards the root node (called the bottom up order).

UNIT-V
RUNTIMESTORAGE MANAGEMENT:

To study the run-time storage management system it is sufficient to focus on the statements:
action, call, return and halt, because they by themselves give us sufficient insight into the
behavior shown by functions in calling each other and returning.

And the run-time allocation and de-allocation of activations occur on the call of functions and
when they return.

There are mainly two kinds of run-time allocation systems: Static allocation and Stack
Allocation. Whilestaticallocation is used bythe FORTRAN class of languages, stack allocation is
used by the Ada class of languages.

0: retun addkess
! *code for ¥ 0: | return address
action —1 8: 1
call p
i 3 an buf
action -2
hahlt
£ |
‘code for p ' e -
action -3 &0 1 P
a4 n
oty Activation record Activation record for
for ¢ (64 bytes) p (88 bytes)

Three address code

STATICALLOCATION: Inthis,Acallstatementisimplementedbyasequenceoftwo
instructions.

2. Amoveinstructionsavesthereturn address
Y. Agototransferscontroltothetargetcode.

The instruction sequence is
MOV#here+20,callee.static-area
GOTO callee.code-area

callee.static-areaandcallee.code-areaareconstantsreferringtoaddressoftheactivationrecord and the
first address of called procedure respectively.

Fhere+20inthemoveinstructionisthereturnaddress;theaddressoftheinstructionfollowing the goto
instruction

Areturnfromprocedurecalleeisimplementedby
GOTO *callee.static-area

For the call statement, we need to save the return address somewhere and then jump tothe
location of the callee function. And to return from a function, we have to access the return
address as stored by its caller, and then jump to it. So for call, we first say: MOV #here+20,
callee.static-arca. Here, #here refers to the location of the current MOV instruction, and
callee.static- area is a fixed location in memory. 20 is added to #here here, as the code
corresponding to the call instruction takes 20 bytes (at 4 bytes for each parameter: 4*3 for this
instruction, and 8 for the next). Then we say GOTO callee. code-area, to take us to the code of
the callee, as callee.codearea is merely the address where the code of the callee starts. Then a
return from the callee is implemented by: GOTO *callee.static area. Note that this works only
because callee.static-area is a constant.

Example:

.Assumeeach 100:ACTION-1
action 120: MOV 140,364
blocktakes20 132:GOTO200
bytesof space 140:ACTION-2
.Start address 160: HALT
ofcodefor ¢ :

andp is 200:ACTION-3

100and 200 220:GOTO*364

. The activation :
Records 300:

arestatically 304:
allocatedstarting :

ataddresses 364:
300and 364. 368:

This example corresponds to the code shown in slide 57. Statically we say that the code
for ¢ starts at 100 and that for p starts at 200. At some point, ¢ calls p. Using the strategy
discussed earlier, and assuming that callee.staticarea is at the memory location 364, we get the
code as given. Here we assume that a call to 'action' corresponds to a single machine instruction
which takes 20 bytes.

STACK ALLOCATION:.Position oftheactivationrecordis notknownuntilrun time

2. .Positionisstoredinaregisteratruntime,andwordsintherecordareaccessedwithan offset
from the register
2. .Thecodeforthefirstprocedureinitializesthestackbysetting upSPtothestartofthe stack area

MOV#Stackstart,SP
codeforthefirstprocedure
HALT

In stack allocation we do not need to know the position of the activation record until run-
time. This gives us an advantage over static allocation, as we can have recursion. So this is used
in many modern programming languages like C, Ada, etc. The positions of the activations are
stored in the stack area, and the position for the most recent activation is pointed to by the stack
pointer. Words in a record are accessed with an offset from the register. The code for the first
procedure initializes the stack by setting up SP to the stack area by the following command:
MOV #Stackstart, SP. Here, #Stackstart is the location in memory where the stack starts.

AprocedurecallsequenceincrementsSP,savesthereturnaddressandtransferscontroltothe called
procedure

ADD#caller.recordsize,SP
MOVE #here+ 16, *SP

GOTO callee.code area

Consider the situation when a function (caller) calls the another function(callee), then
procedure call sequence increments SP by the caller record size, saves the return address and
transfers control to the callee by jumping to its code area. In the MOV instruction here, we only
need to add 16, as SP is a register, and so no space is needed to store *SP. The activations keep
getting pushed on the stack, so #caller.recordsize needs to be added to SP, to update the value of
SP to its new value. This works as #caller.recordsize is a constant for a function, regardless ofthe
particular activation being referred to.

DATASTRUCTURES:Followingdatastructures areusedtoimplementsymbol tables

LISTDATASTRUCTURE:Couldbeanarraybasedorpointerbasedlist. Butthis
implementation is

- Simplest to implement

- Useasingle arraytostorenames andinformation

- Searchfor anameislinear

- Entryandlookup areindependent operations

- Costofentryandsearchoperations areveryhighandlot oftimegoes intobook keeping

Hashtable:HashtableisadatastructurewhichgivesO(1)performanceinaccessingany element of
it. It uses the features of both array and pointer based lists.

-Theadvantagesareobvious

REPRESENTINGSCOPE INFORMATION

The entries in the symbol table are for declaration of names. When an occurrence of a name in
the source text is looked up in the symbol table, the entry for the appropriate declaration,
according to the scoping rules of the language, must be returned. A simple approach is to
maintain a separate symbol table for each scope.

Most closely nested scope rules can be implemented by adapting the data structuresdiscussed
in theprevious section. Each procedure is assigned auniquenumber. If thelanguageis block-
structured, the blocks must also be assigned unique numbers. The name is represented as a pair
of a number and a name. This new name is added to the symbol table. Most scope rules can be
implemented in terms of following operations:

a) Lookup- find themost recentlycreatedentry.

b) Insert-makeanew entry.

c) Delete-removethemostrecentlycreatedentry.

d) Symboltablestructure

e) .Assignvariablestostorageclassesthatprescribescope,visibility,andlifetime

f) -scoperulesprescribethesymbol tablestructure

g) -scope:unitof staticprogramstructure withone ormorevariabledeclarations

h) -scope maybenested

1) .Pascal:proceduresarescopingunits

j) .C: blocks,functions, filesarescopingunits

k) .Visibility,lifetimes,global variables

1) .Common (in Fortran)

m) .Automaticorstack storage

n) .Staticvariables

0) storage class : A storage class is an extra keyword at the beginning of a declaration
which modifies the declaration in some way. Generally, the storage class (if any) is the
first word in the declaration, preceding the type name. Ex. static, extern etc.

p) Scope: The scope of a variable is simply the part of the program where it may
beaccessed or written. It is the part of the program where the variable's name may be
used. If a variable is declared within a function, it is local to that function. Variables of
the same name may be declared and used within other functions without any conflicts.
For instance,

q) intfunl()
{

inta;
int b;

int fun2()
{

inta;
int c;

}

Visibility: The visibility of a variable determines how much of the rest of the program
canaccessthatvariable.Y oucanarrangethatavariableisvisibleonlywithinonepartof one
function, or in one function, or in one source file, or anywhere in the program.

r) Local and Global variables: A variable declared within the braces {} of a function is
visible only within that function; variables declared within functions are called local
variables. On the other hand, a variable declared outside of any function is a global
variable, and it is potentially visible anywhere within the program.

s) Automatic Vs Static duration: How long do variables last? By default, local variables
(those declared within a function) have automatic duration: they spring into existence
whenthefunctioniscalled,andthey(andtheirvalues)disappearwhenthefunction

X)
Name
name
class
size

type

returns. Global variables, on the other hand, have static duration: theylast, and the values
stored in them persist, for as long as the program does. (Of course, the values can in
general still be overwritten, so they don't necessarily persist forever.) By default, local
variables have automatic duration. To give them static duration (so that, instead ofcoming
and going as the function is called, they persist for as long as the function does), you
precede their declaration with the static keyword: static int i; By default, adeclaration of a
global variable (especially if it specifies an initial value) is the defining instance. To make
it an external declaration, of a variable which is defined somewhere else, you precede it
with the keyword extern: extern int j; Finally, to arrange that a global variable is visible
only within its containing source file, you precede it with the static keyword: staticint k;
Noticethat thestatickeywordcan do two different things: it adjusts the duration of a local
variable from automatic to static, or it adjusts the visibility of a global variable from truly
global to private-to-the-file.

Symbol attributesandsymboltable entries

Symbolshaveassociated attributes

Typicalattributesarename,type, scope,size,addressingmode etc.
Asymboltableentrycollectstogetherattributessuchthattheycanbeeasilysetand

retrieved

Exampleoftypicalnamesinsymboltable

Type
characterstring
enumeration
integer

enumeration

LOCALSYMBOLTABLEMANAGEMENT :

Followingareprototypesoftypicalfunctiondeclarationsusedformanaginglocalsymboltable. The
right hand side of the arrows is the output of the procedure and the left side has the input.

NewSymTab : SymTab —#SymTab

DestSymTab : SymTab —#SymTab

InsertSym : SymTab X Symbol =—#boolean
LocateSym:SymTabXSymbol=—#®boolean

GetSymAttr : SymTab X Symbol X Attr=—#boolean
SetSymAttr:SymTabXSymbolX AttrXvalue=—#boolean
NextSym : SymTab X Symbol —#Symbol
MoreSyms:SymTabXSymbol—#boolean

MID EXAMINATION QUESTION PAPER

@ _ Estd.: 2001

- Balaji Institute of Technology & Science
B’rs Laknepally, NARSAMPET, Warangal — 506 331
AAAAAAAAA Accredited by NBA, NAAC & IS0 9001:2015 Certified Institution
(Affiliated to INTUH. Hyderabad and Approved by the AICTE. New Delhi)
www.bitswgl.ac.in, email :principal@bitswegl ac.in::Ph.98660 50044, Fax 08718-230521

MID-I Examination, FEB-2025
Course: B.Tech, Branch-CSM (A&B), Year & Semester: II-IISem
Subject: Automata Theory and compiler design Date: 12-02-2025
Duration: 2 Hour, Max Marks: 30
PART-A

Answer any four Questions Marks [20]

1. a) a finite automaton accepting all strings over {0, 1} having even number of 0’s and
even number of 1’s ?
b) Construct a finite automaton accepting all strings over {0, 1} starts with abb?

2. Constructa DFA for the regular expression (0+1)* using indirect method?

3. a) List down the Identity Rules for the Regular Expression?
b) Explain the Arden’s theorem?

4. Explain with an example about Minimization of the DFA?
5. What is Grammar ? Explain CFG with an example ?

6. Explain pumping lemma concept with an example ?
PART -B

Multiple choice questions Marks [5]

1. There are tuples in finite state machine. []
a)4

b) 5

c)6

d) unlimited

2. Transition function maps. []
A X*Q->ZX
b)Q*Q->X
O)X*X->Q
d)Q*x->Q

3. Number of states requires accepting string ends with 10. []
a)3

162

b) 2
c)1
d) can’t be represented.

4. Extended transition function is. []
a)Q*X*->Q

b)Q*E->Q

c) Q¥ *3* >3

dQ*X->X

5. 0*(q,ya) is equivalent to . []

a) 8((qy)-a)

b) 8(8*(q.y).a)

¢) 8(q.ya)

d) independent from 6 notation

6. String X is accepted by finite automata if []
a)0*(q.x) E A

b) 6(q,x) E A

¢) 6*(Q0,x) E A

d) 0(Q0,x) E A

7. Languages of a automata is []
a) If it is accepted by automata

b) If it halts

¢) If automata touch final state in its life time

d) All language are language of automata

8. Language of finite automata is. []
a) Type 0
b) Type 1
c) Type 2
d) Type 3

9. Finite automata requires minimum number of stacks.
a)l

b) 0

c)2

d) None of the mentioned

10. Number of final state require to accept ®@ in minimal finite automata. []
a)l

b) 2

c)3

d) None of the mentioned

Fill in the Blanks Marks [5]

163

11. How many DFA’s exits with two states over input alphabet {0,1}

12. The basic limitation of finite automata is that

13. Moore Machine is an application of

14 . In Moore machine, output is produced over the change of -

15. The finite automata is called NFA when there exists for a specific input from
current state to next state

16. e-closure of state is combination of self state and

17. In mealy machine, the O/P depends upon

18. The major difference between Mealy and Moore machine is about -
19. Mealy and Moore machine can be categorized as:

20.An e-NFA is tuple representation.

164

Previous year questions

Code No: 126A1

JAWAHARLAL NEHRLU TECHNOLOGICAL UNIVERSITY HYDERABAD
(I/ E. Tech 111 Year 1l Semester Examinations, February - 2023

COMPILER DESIGN
iUemputcr Schbemce and Eagincoringh
Max. Marks: 75
conmis of Parmn A, Part B.

fsvry. which camics 25 marks. In Fart A, Answer all questions.
er any one question from cach unit. Each question carries 10 marks

a, b as sulbs guecalhng.
PART - A
(25 Marks)

1L.a) [hefine hnker amd 2
b} Write a short mote on rq_u (K]
€) Explain context free gra 12

d) Compute FIRET: and FOLLD@?N Tollowing grammar
R—R+R, R—R*R, R— R—id x
€) What arc the evaluation orders for & ed definations? v
[H] Explain the vaniants of syntax trecs. [
gl Whait s race based collection™ 0 >
hj I'h.'[lhmlllrﬂd:m&tsmlhcmwm E]
& oo - d.unnnﬁ 5
1 [hscuss abaul cormmion ﬂnhuptuiwn 0 13

FART - B
/‘ (50 Marks)

Define compiler. Explain varous phases of compiler wilhn-:ulk@ [10)
R

3a) Explam vanous crror recovery strategics in lexical analysis,
b} Construct a Fmite automata and scanning algorithm for recognes
numerical constants in “C" language.

!J

B} Elimiaste lefl recursion in the following grammar

4a) What i kel recursionT Deseribe the algorithm used for chismmatmyg el recursaon.
E—E+T/T.T—T*F/F.F-—(E)/ |5+5L?

0Ok
5a) Write an algonithm for computing LR{K) item sets.
b)) Dhifferentiale beracen Top down and Bolom up parsing echnicgues. [5+5]

6Ga) Construct a Quadruple, Triple and Indirect triple for the statcment
ata*{b-cirvib-c)*d
Bl How are inherited attrtbutes differ from synthesired attnbutes? |eed)

OR
7. Giive syntax directed translation scheme for simple desk caloulator. [1o]

165

UNIT WISE IMPORTANT QUESTIONS

AUTOMATA THEORY AND COMPILER DESIGN IMPORTANTQUESTIONS.

Unit-IV
SHORT QUESTIONS:

Definecompiler.

WhatisContextfreegrammar?

Definepre-processor. Whatarethe functionsof pre-processor?

'What is input buffer?

Differentiatecompilerandinterpreter

What is input buffering?

Definethe followingterms:a)L.exemeb) Token

Defineinterpreter.

'WhatarethedifferencesbetweentheNFA andDFA?

LONG questions:

Explainthe variousphasesof acompilerwith anillustrativeexample

DefineRegularexpression.ExplainthepropertiesofRegularexpressions.

Differentiatebetweentop downandbottomupparsing techniques.

ConstructanFA equivalenttotheregularexpression
(0+1)*(00+11)(0+1)*

Explainthe various phases of acompilerin detail. Alsowritedown theoutput forthefollowing
expression:position:=initial+rate* 60

ConstructanFA equivalenttotheregularexpression
10+(0+11)0*1

Defineaugmented grammar

ComparetheLRParsers.

CompareandcontrastLRand LLParsers

Differentiatebetweentop downparsers

DefineDeadcodeelimination?

Eliminateimmediateleftrecursionforthefollowinggrammar: E-

SE4+T | T
T->T*F |F
F->(E)| id

MentionthetypesofLR parser.

Explainbottomupparsingmethod

166

Discussinaboutleft recursionandleft factoringwith examples.

Constructthepredictiveparserforthefollowinggrammar S-
>(L)/a
L->L,S/S

S—L=R
S—R
L—-*R
L—id
R—L

CheckwhetherthefollowinggrammarisSLR(1)ornot.ExplainyouranswerwithReasons.

ConstructSLRparsetablefor
S->L=R/R
R->L
L->*R/id

Stateandexplaintherulestocomputefirstandfollowfunctions E-
>E+T/T
T->T*F/F
F->F*/a/b

ConstructCLRparsetablefor
S->L=R/R
R->L
L->*R/id

ConstructtheLR Parsingtableforthefollowinggrammar: E5E + T
| T

T—>T*F|F F

— (E)/id

ConstructanLALRParsingtableforthefollowinggrammar: E->
E+T |T

T->T*F|F

F->id

FindtheSLRparsingtableforthegivengrammar: E-
>E+E | E*E | (E) | id.
Andparsethesentence(a+b)*

167

UNIT-5
SHORTQUESTIONS:

DefineTypeEquivalence

Explaintherole ofintermediatecodegeneratorincompilation process

Defineleftmostderivationandrightmostderivationwith example

'Whatarethevarioustypesofintermediate code representation?

Writeanote onthespecification ofasimple typechecker.

Explainintermediatecode representations?

Definetype expression withan example?

Stategeneralactivation record?

Explaintype expressionandtype systems

LONGQUESTIONS:

Explainin briefabout equivalenceof typeexpressions with examples

Explainabout TypecheckingandTypeConversion with examples

'Whatisathreeaddresscode?Mentionitstypes.Howwouldyouimplementthethree address
statements?Explainwithexamples.

Whatistypechecker?Explainthespecificationof asimpletype checker

Translatethefollowingexpression: (a
+b) * (c+d)+(a+b+c)into
a)Quadruplesb)Triples

Constructaquadruple,triplesforthefollowingexpression: a
+a*(b-c)+(b-c)*d?

Explainvariousstorageallocationstrategieswithexamples.

Explainstaticandstackstorageallocations?

'Writethe quadrupleforthefollowingexpression
(X +y)*(y+2) Hxty+2)

‘WhatisaD AG?Mentionits applications.

WhatareAbstractSyntaxtrees?

Defineaddressdescriptor andregisterdescriptor

Discussaboutcommon subexpression elimination

'Whatis aFlow graph?

Defineconstantfolding?

Definereductioninstrength?

168

LONGQUESTIONS:

Explaintheissueandthe differencebetweentheheap allocatedactivationrecordsversus stack
allocatedactivation records

Writethe principalsources of optimization

Discussabout the following:
a) CopyPropagation
b) DeadcodeElimination
c¢) Codemotion.

ExplainLazy-codemotionproblemwithanalgorithm

Explainthe followingwith an example:
a) Redundantsub expression elimination
b) Frequencyreduction
c¢) Copypropagation

Explainvariousmethod tohandlepeepholeoptimization.

Explain thefollowingpeephole optimizationtechniques:
a) EliminationofRedundantCode
b) EliminationofUnreachableCode

[lustrateloopoptimizationwithsuitableexample.

Explainvarious codeoptimization techniques in detail.

'Whataretheinduction variables?

Explain about code motion.

'Whatareinductionvariables? Whatisinductionvariableelimination?

'Whatismachine independentcode optimization?

'Writeashort note on copyPropagation

'Whataretheinduction variables?

Writeashort note on Flowgraph.

Explaindata-flowschemason basicblocks withflow graphs

ExplainLazy-codemotionproblemwithanalgorithm

Explaininbriefabout different Principalsourcesof optimizationtechniqueswith suitable
examples.

169

GiveanexampletoshowhowDAGisused forregisterallocation

Explainindetailaboutmachinedependent codeoptimizationtechniqueswiththeir drawbacks
Explainin briefabouttheissues in thedesign ofcodegenerator.

Explainindetailaboutpeephole optimization.

Explainmachinedependent andmachineindependent optimization?

Explaindata-flowanalysisofstructuralprograms.

Explainindetailtheprocedurethateliminates globalcommonsub expression

AUTOMATA THEORY AND COMPILER DESIGN [IB.TECH-IISEM

Tutorial problems with blooms mapping

In the context Automata Theory and compiler design , Bloom's Taxonomy can be a useful framework for

structuring problem-solving and learning outcomes. Bloom's Taxonomy categorizes learning objectives

into levels of complexity: Remember, Understand, Apply, Analyze, Evaluate, and Create. I'll present a
few tutorial problems that correspond to different levels of Bloom's Taxonomy.

1. Remember (Knowledge):

Problem 1:

Define the following terms:
a. Alphabet

b. String

c. Language

d. Finite Automaton

e. Regular Expression

Solution:
Provide definitions for each term, with examples if needed.
o Alphabet: A finite set of symbols, e.g., £ = {0, 1}.
o String: A finite sequence of symbols from an alphabet, e.g., "101".
o Language: A set of strings over an alphabet, e.g., L= { "0", "1","01", "10" }.
o Finite Automaton: A machine with a finite set of states used to recognize regular
languages.
o Regular Expression: A formal notation for defining regular languages.

2. Understand (Comprehension):

Problem 2:
Explain why the set of strings consisting of an even number of Os and an odd number of 1s is not
regular. Use the pumping lemma to justify your answer.

Solution:

Solution:

This problem requires an understanding of the pumping lemma. You would show that the string
"000111" cannot be pumped without breaking the conditions of having an even number of Os and
an odd number of 1s. Pumping a portion of the string could lead to an imbalance in the numbers of
0s and 1s. Thus, the language is not regular.

3. Apply (Application):

Problem 3:
Construct a Deterministic Finite Automaton (DFA) that accepts the language of strings over {0, 1}
where the string contains at least one 'l'.

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEN

Solution:

o The DFA should have two states:
= 0 (initial state): If a '0' is read, the machine stays in state q0; if a '1' is read, the
machine transitions to state ql.
= (1 (accepting state): Once in state q1, the machine stays in q1, Once in state ql,
the machine stays in ql, accepting any further input.

State transitions:

e 0 — oninput'0’' — q0
e 0 —oninput'l'—ql
e ql —oninput'0' — ql
e ql »oninput'l'—ql

Acceptance condition: The string is accepted if the machine ends in state q1.
4. Analyze (Analysis):

e Problem 4:
Given the context-free grammar:

e Analyze the language generated by this grammar. What kind of strings does it accept?

Solution:

The grammar generates strings that consist of an equal number of 'a's followed by an equal
number of 'b's, with no other characters. The analysis of the grammar reveals that the language is
of the form { a*n b”n |n >0 }. This is a classic example of a context-free language.

5. Evaluate (Evaluation):

e Problem 5:
Evaluate whether the following language is context-free or not:

Solution:

This language is not context-free. The intuition comes from the fact that a context-free
grammar cannot ensure that two arbitrary halves of a string are identical. The pumping lemma
for context-free languages can be used to formally prove that this language cannot be context-
free.

6. Create (Synthesis):

e Problem 6:
Create a pushdown automaton (PDA) for the language L = { w € {a, b}* | the number of 'a's is
equal to the number of 'b's }.

Solution:
To create a PDA for this language, one would design a machine that pushes symbols onto a stack

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEN

when it reads 'a' and pops symbols when it reads 'b', ensuring that the number of 'a's and 'b's are
equal. The PDA would need to handle the following transitions:

o Onreading 'a', push 'A' onto the stack.
o Onreading 'b', pop an 'A' from the stack.
o Accept if the stack is empty after reading the entire input string.

Transitions:
o (q0,a,€)—(q0,A)

o (q0,b,A) —(q0, ¢)
o (q0, &, &) — (q_accept, €) (if the stack is empty)

AUTOMATA THEORY AND COMPILER DESIGN [IB.TECH-IISEM

Assi

gnment questions with blooms mapping

Laknepaily (%, Marsampe (51 g

\J

BV

DEPARTMENT OS5 CSE(AIRML]

i Institute of Technology &

armct < % A0, Telangess Sanir, Eud

wisvad by ATCTTT
L N LT ETEET]

Science

Pyl NAAD As Grade
S Uied b

"ECH -l SEM Automata Theory and compiler Desi
IInit wize Aszsignment Questions
level.of Blooms
1. No Question Aarks] Taxanomy
INIT-1 cCO
Construct 20F Ato acceptsetafallstringsendingwith010.Define language
N cver an alphabet § = 4 0,1 and write forthe above DF &, 5 Undarst a.m‘.(ll:
Construct aldooremachinetoacceptthefollowing language. L = § w |w mod
2l 3=0fonF =40,1,3} 3 Femembar(L1) 1
3| Wirite anpsixdifferencesbetweenDF AandhF & 3 Understand(T.2) 1
g writeMF AwithE to NF Aconversionwithaneample. 5 Analyza(l4) 1
5| Comnstract MF A for[0+1)°[00+ H)[D #1)° andConvertta 3 Understand(I.1) 1
MIT-2 1
1| Convert BegularExpression(] *+1toFinite Avtomata. 3 Femember(L1}
___ 2] ConstructRishtlinsar I sftlinsarFesularGrammarsfor 5 Understand(L2) 2
3| _01%+1. 5 | Remember(Ll) | 2
4| Explainldentitvrules SumphifrtheRerularExpression- € + 5 Understand(L2) 2
S|Explaintheproperties applicationsofContextFreel anruaped 3 Analyzs(L4) z
MIT-3 2
| DiscussthePumping lemma forContestFreelanguagesconcept 3 Analvzs(14)
T withesamplelab e wheren: =0} 5 Femember(L 1) 3
3| Write the simplifiedCFGproductionsins + a51b 5132 Sk £ 3 Understand(L2) 3
4 ConvertthefollowingCFG into GRF. 3 Undarstand(L2) 3
gl 5+ AAlaA3 5510 3 Femember(I1.1) 3
MIT-4 3
1| Definel insarboundadavtomataandexplainits model? 5 Femembar(L1}
2| Explainthepowerandlimitationsof Turinzmachine. 3 Understand{L2) q
3| Explainthetvpesof Turinegmachines. 5 Undarstand(L2) d
___ 4| Write briefly about the following a})Church’s Hypothesiz 5 Analvze({L 4} q
St Counter machine % Femember(L.1} q
MIT-5 4
1| ExplaintheHaltingproblemandTuring Reducibility. 3 Analyze(L4)
21 Writeashortnotezonvniversal Turinemachine. 5 Understand{L2) =
31 WriteashortnotesonChomsloshisrarchy. 5 Bemember(L 1} =
WriteashortnotesonContextzenaitivelansrarsandlinear
4| boundad 5 Analvze(14) 5
o| Write a shortnoteonNFPeomglate 3 Bemember(L 1} 5

AUTOMATA THEORY AND COMPILER DESIGN

IIB.TECH-IISENA

List of students

1 23C31A6601 ADAPA RAKESH

2 23C31A6602 AITHA PRAVEEN

3 23C31A6603 AKARAPU ARPAN

4 23C31A6604 AMREEN

5 23C31A6605 ARURI PAVAN

6 23C31A6606 ARUTLA AJAY

7 23C31A6607 ATLA SAIKRISHNA

8 23C31A6608 BAIRABOINA PREETHI

9 23C31A6609 BAJJURI SANTHOSH

10 23C31A6610 BALABAKTHULA MANISHA
11 23C31A6611 BATTHULA DEEPIKA

12 23C31A6612 BEERUM LAXMI SRINIVAS
13 23C31A6613 BOINI AJAY

14 23C31A6614 BOLLENA VARSHA

15 23C31A6615 BOMMANAPELLY POOJITHA
16 23C31A6616 BURA SANJAY

17 23C31A6617 CHINNALA ARJUN

18 23C31A6618 CHINNAPALLY ASHWITHA
19 23C31A6619 CHINTHIREDDY PRAVEEN
20 23C31A6620 DARAVATH JASHWANTH
21 23C31A6621 DASARI LAHARI SRI
22 23C31A6622 DASARI SRINIVAS
23 23C31A6623 DASU SAIPRIYA
24 23C31A6624 DOLI ARCHANA
25 23C31A6625 DUDDE NITHISH
26 23C31A6626 DUPPATI PRANEETH
27 23C31A6627 EGA SHIVANI
28 23C31A6628 ELDI KARTHIK
29 23C31A6629 ENUGALA BHAVANI
30 23C31A6630 GAJJALA VARUN
31 23C31A6631 GANDHAM KARTHIK
32 23C31A6632 GANGINENI NAVEEN KUMAR
33 23C31A6633 GANJI KAVYA SHRI

AUTOMATA THEORY AND COMPILER DESIGN

[IB.TECH-IISEN

34 23C31A6634 GOLI LAXMI PRASANNA
35 23C31A6635 GUJJULA RAMYA

36 23C31A6636 GUNDAMALA ARUN

37 23C31A6637 GUNISHETTI GANGOTHRI
38 23C31A6638 INDLA SANDHYA

39 23C31A6639 INTSHAR ALAM

40 23C31A6640 IPPA RITHWIK

42 23C31A6642 KANDUKURI JAYALAXMI
43 23C31A6643 KANKALA SUSHMITHA

44 23C31A6644 KANNAM SHIVA SAI

45 23C31A6645 KARRA SAHITHI REDDY
46 23C31A6646 KASANABOINA BHASKAR
47 23C31A6647 KATLA ARUN KUMAR

48 23C31A6648 KEESARI SRIRAM

49 23C31A6649 KOLA SIDDHARTHA

50 23C31A6650 KONTAM DIVYA

51 23C31A6651 KOTHA DIVYA

52 23C31A6652 KOTTURI CHAITHANYA
53 23C31A6653 KUCHANA SRAVANI

54 23C31A6654 LAKKA VARUN RAJ

55 23C31A6655 LEKKALA VARAPRASAD
57 24C35A6602 JADALA SHIVA KUMAR

58 24C35A6603 KUCHANA SANDEEP

59 24C35A6604 LAKKARSU SUNNY

60 24C35A6605 MOHAMMAD ARIF AHMED
61 24C35A6606 NARUGULA SAI CHANDANA

AUTOMATA THEORY AND COMPILER DESIGN

[IB.TECH-IISEM

Scheme and evaluation of internal tests

Sehiiie § g punctiss

-

branch: T cgro—- 10 sz
Dation ! |20 Miaectes Max sqdsf 2 30

B

— ——
— —

- Congvact a £A M_Pﬁqﬁ o0 Smng over”
> 2 =, 4§ ; hatiqg €Ven no-§ - ps w tvea
Py Fan)
il T R g T4 mas g
Oty M Jovguop e [27]
) conatoct CL M.Mﬁfg Qﬂﬂfagﬁ(.ow{_
Zz240 30 tark Sib abb) E‘Q \(Lj
,S_?J" “ng\%q&ﬂe 1,«:}—5{"&?‘% Masty [3]
Onboctin § FA Marks R

AUTOMATA THEORY AND COMPILER DESIGN [IB.TECH-IISEN3

@ Conglroct o DFA fof e RE (H)*
Uﬂc\a 1r’\cﬁ.'lsé’f{‘ m@:{Lch‘)

Marts$ [5]

AT laguage OAtNY Marks [1]

npwed meted) epr e,

- Condvoclion ﬂ DT MoK [1]
@Q.LM lown Abe ?&M%Mﬂpg{;
Heobs (8Y]

Pehaitin aclendrby @edes
| Meo(g Ei]

L e
=

U ' adenlidy Radte reops[Ay

B Crplata abodd dodewd eaxem)

- Maotbd | §v)
ol obedend

= BB iug DAL tien |

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM

D Erper ath an g tewd

"\-M-tﬂ-tmq M Did)

Hoar K f@}

4 3 LR
Stepy Fox H&Lﬂ‘l—&-\?,.be D54

Masiks [2]

él_ﬂ.l.-_‘ftL Pottem ¢xplanatio
Masths [37]

(et Wiap ds brassmat) Eylasy S o
ail f’mﬂh) Hlankes [53

Y- Grammus] DEPatlion Hast E:L}
..E__;pﬂ
yare fres rasit L3)
fis |
EBL Explain POy Lomonn Conanpl LSith
AUTC @ SR f':{%]'ilﬁ‘) M(ﬂ-tkff%:)

Marks sheet

Py aMEE - 200 5 Comtalicdd Insbituigion

Laknepally (W), Marsampet (M), Warangal District -

Tl : 20mk 1

506 331, Telangana Stawe, India

@ Balaji Institute of Technology & Science
PALUTONOMNOLUS)

Accredited by NBA (UG - CE, ME, ECE & CSE) & MNAAC A+ Grade

BITS (AMiliated wo INT University, Hyderabad and Appreved by AICTE, New Delhi)

www. bitswelacin, email: principalea bitswgl.acin. Pho9%6640 S0044. Fax: ORT18-230521

EVALUATION PROCESS: MID -1 Feb-2025
Course - B.Tech. Branch - CSM-A, Year & Sem:I1/1T
Subject:AUTOMATA THEORY AND COMPILER DESIGN

Faculty Name: Mrs.ALVedavani

[Duration: 120 minutes, Max Marks: 35

L
QN4 Answer any two questions. Each question carries 5 marks. |Marks LE;EI DEBID?M co
L AXOMOTY
Define DFA and NFAT Write are the differences between
3 EEMEMEER. col
! |DFA and NFA? ?
= - : z : :
5 |2 Con iﬂ the following NFA with € moves to DF Awith an 5 ANALYZE col
example’
3 3.De _sign DFA for E‘.'Ef number of a’s and even number of b's 5 |UNDERSTAND coa
over mput symbol ab.”
4 4. What is mea.n.bj,-' REgula:r expr?ssmn. Cnm'e.ﬂ DFA into 5 ANALYZE cn
Regular Expression using Arden’s Theorem With example?
3. What 1s mean by Pumping Lemma? show A={an bn n>=1} - -
5 x 2 3 REMEMEER. COl
is not regular? Using Pumping Lemma? g
6 6. Define Push Down Automata with anexample? 5 |UNDERSTAND co3
Evaluation Process:
Questionz Aligned to Course Qutcomes and .| QUIZ |Assignme
Courze Outcomes Marks Obtained TQIE_\?F;I} (MAYX | me (MAX JI?L%?!I;}
o MID-IT col | col | coz| coz | cos coa. YRS 1) 5) =
LN
Q. No.1 | Q. No.2|Q. No.d Q. No.4{Q. No.d Q. No6
RollNo. |Distribution of Marks
1 | 23C31A6E01 |ADAPARAKESH 2 2 3 - 5 0 12
2 | 23C31A6602 |AITHA PRAVEEN 3 4 7 5 5 17
3 | 23C31A6603 |AKARAPU ARPAN 3 3 4 3 15 2 3 23
4 | 23C3145604 |AMREEN 2 2 2 4 2 14
5 | 23C31AG605 |ARURIPAVAN 2 4 10 2 1 13
AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM

& | 23C31AEE05 |ARURI PAVAN 4 2 4 10 2 1 13
& | 23C31AEE06 |ARUTLAALAY 4 3 3 12 4 1 17
7 | 23C31AEE0T |ATLASAIKRISHNA 2 3 4 g 3 3 17
8 | 23C31AEE08 |BAIRABOIMA PREETHI 4 3 2 4 13 g 4 26
9 | 23C31A6609 |BAJIURISANTHOSH 4 4 4 5 17 10 3 32
10 | 23C21AEE10 |BALABAKTHULA MAMISHA 4 4 4 3 17 3 5 25
11 | 2303146611 |BATTHULA DEEPIKA 4 3 A 3 17 3 3 27
12 | 22C21A6612 |BEERUM LAXMISRINIVAS 4 4 5 3 158 g 3 32
13 | 23C31AE613 |BOINI AJAY 3 3 10 7 4 21
14 | 2303146614 |BOLLEMAVARSHA 5 3 3 15 10 3 34
15 | 23C231AEE15 |BOMMANAPELLY POOJITHA 3 5 4 18 10 3 i3
16 | 23C31A6616 |BURASAMIAY 4 1 4 1 10 6 4 20
17 | 2303146617 [CHINMALA ARIUN 4 4 g 4 14
18 | 23C21AEE1E [CHINMAPALLY ASHWITHA 3 1 1 2 7 3 5 13
15 | 23C31AE61% |CHINTHIREDDY PRAVEEN 3 4 A 3 15 g 3 33
20 | 2303146620 |DARAVATH JASHWANTH 3 2 4 g 3 3 1%
21 | 2203146621 |DASARI LAHARI SR 2 2 3 g g 4 21
22 | 23C31A6622 |DASARISRINIVAS 2 3 4 9 5 3 17
23 | 23C21AEE23 |DASU SAIPRIYA 4 2 2 g 4 3 17
24 | 23C21A6624 [DOLIARCHANA 4 4 3 3 18 10 3 33
25 | 23C31A6625 |DUDDE NITHISH 5 2 4 3 14 10 4 28
26 | 23C21AEE2E |DUPPATI PRAMEETH 3 2 3 12 g 4 25
27 | 23C31A6627 [EGASHIVANI 3 3 2 3 13 7 4 24
28 | 23C21AEE28 |ELDIKARTHIK 1 2 2 3 g 4 1
29 | 23C31AEE29 |EMUGALA BHAVANI 3 3 2 5 13 g 4 26
30 | 23C31AG630 (GAJJALAVARUN 3 4 3 4 1 9 3 30
31 | 2302146631 [GANDHAM KARTHIK 3 3 g 2 1
32 | 23C21AE632 |GANGINENI MAVEEN KUMAR 5 4 3 3 19 g 3 33
33 | 23C31AEE33 |GAMJI KAVYASHRI 5 5 5 5 20 g 3 34
34 | 23C21AEE34 (GOLILAXMI PRASANMA 3 2 4 3 16 g 4 20
AUTOMATA THEORY AND COMPILER DESIGN I1B.TECH-IISEM

References, Journals, websites and E-links if any

TEXT BOOKS:

1. Introduction to Automata Theory, Languages, andComputation,
3ndEdition, JohnE. Hop croft, Rajeev Motwani, Jeffrey D. Ullman,
Pearson Education.

2. Theory of Computer Science— Automata languages and

computation, Mishra and Chandrashekaran, 2nd edition, PHI.

REFERENCEBOOKS:

1. Introduction to Languages and The Theory of Computation, John.C Martin, TMH.

2. Introduction to Computer Theory, Daniell. A.Cohen, JohnWiley.

3. A Text book on Automata Theory, P.K.Srimani, Nasir S.F.B, Cambridge University Press.
4. Introduction to the Theory of Computation, Michael Sipser, 3rdedition, Cengage Learning.
5. Introduction to Formal languages Automata Theory and

computation Kamala Krithivasan, Rama R, Pearson.

AUTOMATA THEORY AND COMPILER DESIGN [IB.TECH-IISENA

	DEPARTMENT OF COMPUTER ENGINEERING (SE)
	Course File Contents:
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI

	DEPARTMENT VISION AND MISSION
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI
	ROGRAMME OUTCOMES (POs)

	Course Objectives
	Mapping of course outcomes with program outcomes:
	PROGRAM SPECIFICOUTCOMES (PSOs):

	1. Chalk and Talk (Traditional Method)
	2. PowerPoint Presentations (PPTs)
	3. NPTEL (National Programme on Technology Enhance
	4. Innovative Teaching Methods
	5. Flipped Classroom
	6. Interactive Online Learning Platforms
	7. Project-Based Learning
	8. Collaborative Learning (Peer Learning)
	9. Use of Animation/Visualization Tools
	10. Incorporating Coding
	UNIT-IV
	INTRODUCTION TO LANGUAGE ROCESSING:
	LANGUAGETRANSLATORS:

	LANGUAGE PROCESSING SYSTEM:
	PHASES OF A COMPILER:
	PHASE,PASSESOFACOMPILER:
	THEFRONT-END& BACK-ENDOFACOMPILER

	LEXICALA NALYSIS:
	TOKENS,PATTERN SAND LEXEMES:

	INPUTBUFFERING:
	SPECIFICATIONOF TOKENS:

	SYNTAX ANALYSIS(PARSER)
	THEROLEOFTHE PARSER:

	RUNTIMESTORAGE MANAGEMENT:
	REPRESENTINGSCOPE INFORMATION
	LOCALSYMBOLTABLEMANAGEMENT :
	1. Remember (Knowledge):
	2. Understand (Comprehension):
	3. Apply (Application):
	4. Analyze (Analysis):
	5. Evaluate (Evaluation):
	6. Create (Synthesis):

