
Deptof CSE(AI&ML) Balaji Institute of Technology &Science 1

COURSE FILE
ON

AUTOMATA THEORY AND COMPILER DESIGN

CourseCode-22CS427PC

II B.Tech II-SEMESTER

` A.Y.:2024-2025

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 2

DEPARTMENT OF COMPUTER ENGINEERING (SE)

Course File Contents:
S.No Name of the Topic Page No
1. Cover page
2. Vision and Mission of the department
3. PEOs and POs
4. Syllabus copy and Academic calendar
5. Brief notes on the importance of the course
6. Prerequisites if any
7. Course objectives and course outcomes
8. CO-PO, CO-PSO mapping and Justification
9. Class Time table and Individual time table
10 Method of teaching, Chalk and talk/ppts/NPTEL lectures/cd/innovative

teaching method,etc.
11 Lecture schedule(without faculty name)
12 Detailed notes
13 Additional topics
14 Mid exam question Papers- Theory and quiz
15 University Question papers of previous years
16 Unit-wise quiz questionswith blooms mapping
17 Tutorial problems with blooms mapping
18 Assignment questions with blooms mapping
19 List ofstudents.
20 Scheme and solution of internaltests.
21 Markssheet.
22 Result analysis for internal exams (tests) with respect toCOs-POs
23 Result analysis for external exams (university)
24 CO and PO attainment sheet
25 GATE/competitive exam questions
26 References, Journals, websites and E-links if any

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 3

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI&ML)

DEPARTMENT VISION AND MISSION

VISION

To be a global leader in Artificial Intelligence and Machine Learning research, innovation, and education,

driving transformative advancements that empower industries, enhance human capabilities, and contribute

to a smarter, more sustainable world.

MISSION

M1:Innovative Research& Quality Education – To Conduct research on cutting-edge Technologies to

address complex real-world problems across diverse domains and provide world-class education and

training to equip students with technical expertise, ethical responsibility, and problem-solving skills.

M2: Industry Collaboration & Ethical AI Development –To Foster strong partnerships with industries,

academia, and government organizations to develop impactful AI solutions and promote responsible and

ethical AI practices that align with societal values and global sustainability.

M3: Entrepreneurship & Innovation – Encourage entrepreneurship and the development of AI-driven

start-ups and products that contribute to economic growth.

M4: Community Engagement – Engage with communities to spread AI awareness, inclusivity, and

accessibility for societal benefit.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 4

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI&ML)

Programs Educational Objectives (PEOs)

PEO1: To equip graduates with a robust foundation in AI, ML, and related computational techniques,
enabling them to develop and implement intelligent systems across multiple domains.

PEO2: To empower graduates to conduct advanced research, drive innovations in AI and ML, and create
transformative solutions for complex real-world challenges.

PEO3: To prepare the graduates to equip with the skills and adaptability to thrive in dynamic industrial
environments and pursue continuous learning to stay ahead in emerging AI technologies.

Programs Specific Outcomes (PSOs)

PSO1: Graduates will be able to design, develop, and implement AI and ML-based solutions using modern
tools, frameworks, and methodologies.

PSO2: Graduates will be able to analyze, pre-process, and interpret large-scale data, applying statistical and
machine learning techniques to derive meaningful insights and solve real-world problems.

PSO3: Graduates will develop expertise in deep learning, computer vision, natural language processing, and
reinforcement learning to create innovative AI applications across multiple domains.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 5

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI&ML)

ROGRAMMEOUTCOMES (POs)

A graduate of the Software Engineering Program will demonstrate.

 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

 Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, Natural sciences and engineering sciences.

 Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

 Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 6

 Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

 The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

o Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

o Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

o Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

o Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

 Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments to manage
projects.

Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 7

SYLLABUS COPY

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 8

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 9

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 10

ACADEMIC CALENDER

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 11

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI&ML)

Importance of the course

 An automaton is a construct that possesses all the indispensable features of a digital
computer.

 It accepts input, produces output, may have some temporary storage and can make
decisions in transforming the input into the output.

 A formal language is an abstraction of the general characteristics o programming
languages.

 Aformallanguageconsistsofasetofsymbolsandsomerulesofformationbywhichthese
symbols can be combined into entities called sentences.

PRE-REQUISITES:

Mathematical Logic

Set Theory

Discrete Mathematics

Basic Concepts in Computation

Theory of Languages

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 12

Course Objectives

 To present the theory of finite automata as the first step towards learning advanced
topics such as compiler design.

 To discuss the applications of finite automata towards text processing.

 To develop an understanding of Regular expressions and context free grammars and
how these concepts are used in lexical analyzer

 To develop an understanding of finite automata through Turing machines.

Course Outcomes

After completing this course the student will be able to:

C213.1 Design finite automata without output like DFA, NFA, €-NFA and finite automata with output like

Moore and mealy machines and also conversions among them like (NFA to DFA). (Synthesis)

C213.2 Recognize about regular expressions, pumping lemma for regular languages and closure properties

of regular languages. (Knowledge)

C213.3 Define CFG, derivations (Leftmost &Rightmost)and draw parse trees and gain Knowledge on

Ambiguity in Grammars. (Knowledge)

C213.4 Define and design a PDA for a given CFL. Prove the equivalence of CFG and PDA and their inter-

conversions. (Knowledge)

C213.5 Illustrate CFG normal forms, Use pumping lemma to prove that a language is not a CFL

and Define and design TM for a given computation. (Comprehension)

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 13

C213.6 Differentiate between decidability and undecidability ,Generalize Turing Machines into

universal TMs (Analysis)

Mapping of course outcomes with program outcomes:

High-3 Medium-2 Low-1

PO/PSO
/CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

C213.1 2 1 2 - - - - - - - - - - -
C213.2 2 - 1 - 1 - - - - - - - 2 -
C213.3 2 1 2 - 1 - - - - - - - 2 -
C214.4 2 - - - - - - - - - - - - -
C213.5 2 1 2 - - - - - - - - - - -
C213.6 2 1 - - - - - - - - - - - -
C213 2 1 1.75 - 1 - - - - - - - 2 -

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 14

CO–PO /PSO Mapping Justification

Course:Formal Languages and Automata Theory

PROGRAMME OUTCOMES(POs):

PO1 Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of
complex engineering problems.

PO2 Problemanalysis:Identify, formulate,reviewresearchliterature,andanalysecomplex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3 Design/developmentofsolutions:Designsolutionsforcomplexengineeringproblems and
design system components or processes that meet the specified needs with
appropriateconsiderationforthepublichealthandsafety,andthecultural,societal,and
environmentalconsiderations.

PO5 Moderntoolusage:Create,select,andapplyappropriatetechniques, resources,and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PROGRAM SPECIFICOUTCOMES (PSOs):

PSO1 Professional Skills:The ability to implementcomputer programs of varying complexity
In the areas related to web design, cloud computing and networking.

C213.1 DesignfiniteautomatawithoutoutputlikeDFA, NFA,€-NFAandfiniteautomata

WithOutputlikeMooreandmealymachinesandalso conversionsamongthemlike (NFA
to DFA). (Synthesis)

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 15

Justification
PO1 Gainknowledgeonfinite automata.(level2)
PO2 Analyseproblemandaccordinglyconstructfiniteautomata.(level1)
PO3 Designsolutionsforengineeringproblemsanddesignsystemcomponentsusingfinite

automata.(level2)

C213.2Recognizeaboutregularexpressions,pumpinglemmaforregularlanguagesand Closure
properties of regular languages. (Knowledge)

Justification
PO1 Gainknowledgeonregularexpressions.(level2)
PO3 Useregularexpressionsconceptinpatternmatching.(level1)
PO5 Tocreatelexprogramsuseregular expressions.(level1)
PSO1 InWebdesigning,fortextsearchinguseregularexpressions.(level2)

C213.3DefineCFG,derivations(Leftmost &Rightmost)anddrawparsetreesandgain Knowledge
on Ambiguity in Grammars. (Knowledge)

Justification
PO1 GainknowledgeonCFG,derivationsandparsetrees(level2)
PO2 AnalyseproblemandaccordinglyconstructCFG. (level1)
PO3 UseCFGindesignofparsersincompilerdesignandXML.(level2)
PO5 TocreateYACC(parsers) useCFG.(level1)
PSO1 Incompiler design(Parsers),webdesigning(XML,DTD)useCFG.(level2)

C213.4Define and designa PDA for a givenCFL. Prove the equivalence ofCFG and PDAand
their inter-conversions. (Knowledge).

Justification
PO1 Gainknowledge onpushdownautomata(level2)

C213.5 IllustrateCFGnormalforms,Usepumping lemmatoprovethatalanguageis notaCFL
and Define and design TM fora given computation. (Comprehension)

Justification
PO1 Gain knowledge on CFG normal formsand Turing machines.(level2)
PO2 Analyse problem and accordingly construct Turing machine(level1)
PO3 Design solutions for engineering problems usingTuring machine(level2)

C213.6 Differentiate between decidability and undesirability,GeneralizeTuring
MachinesintouniversalTMs(Analysis)

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 16

Justification
PO1 Gainknowledgeondecidability,undecidability, universalTMandpost correspondence

problem(level2)
PO2 Analyseproblemandsolveit.(level1)

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 17

CLASS TIME TABLE

Personal time table

Mrs.M.Vedavani
TOTAL-14
DAY 1 2 3 4 5 6 7

9:30 - 10:20 10:20 - 11:10 11:20 -
12:10

12:10 - 01:00 LUNCHBR
EA

1:40 - 02:30 2:30 - 03:20 3:20 - 04:10

MON IICSM-
ATCD

TUE IIICSM-ML LAB

WED IICSM-ATCD

THU
FRI IIICSM-CN LAB IICSM-

ATCDF

SAT IICSW-ATCD IICSM-DS LAB

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 18

DEPARTMENT OF COMPUTER ENGINEERING (SE)

Method of teaching, Chalk and talk/ppts/NPTEL lectures/cd/innovative teaching method, etc.

1. Chalk and Talk (Traditional Method)

 Pros: Simple, direct interaction with students, flexible for impromptu explanations, and
allows for personalization of teaching pace.

 How to Improve It for Flat Subjects:
o Use Visuals: Draw diagrams and flowcharts to illustrate concepts like state diagrams

for automata, parsing trees for grammars, etc.
o Relate to Real-World Applications: Try to link abstract concepts to real-life

examples or simple computing problems, such as search engines (regular expressions)
or programming language compilers (context-free grammars).

o Interactive Discussions: Engage students by asking questions or encouraging them
to explain concepts as they are learning.

2. PowerPoint Presentations (PPTs)

 Pros: Can include diagrams, bullet points, videos, and other visuals that make abstract
concepts clearer.

 How to Improve It:
o Clear Visuals: Use animations to show how automata change states, or how a string

is parsed by a context-free grammar.
o Step-by-Step Breakdown: Break complex problems into simple steps. For instance,

show the process of evaluating a regular expression using a DFA or constructing a
CFG.

o Interactive Slides: Include quiz questions or polls during the presentation to check
comprehension (e.g., "What happens when this NFA receives input X?").

3. NPTEL (National Programme on Technology Enhanced Learning) Lectures

 Pros: High-quality, well-structured content from experts in the field. Self-paced learning is
possible.

 How to Improve It:
o Flipped Classroom Approach: Assign NPTEL lectures as homework and then

spend class time discussing the most challenging concepts from those lectures.
o Active Discussion After Viewing: After watching NPTEL videos, have an in-class

discussion or Q&A session to clear doubts.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 19

o Supplementary Exercises: Use practice problems, coding exercises, or simulation
tools related to the NPTEL content to enhance learning.

4. Innovative Teaching Methods

 Gamification: Create challenges or games that involve solving automata problems or
language problems. For example, students could "race" against time to design a DFA or
NFA for a given language.

 Hands-on Software Tools:
o JFLAP: A great tool for simulating automata, Turing machines, and grammars.

Have students experiment with designing automata or proving languages are regular
or context-free using JFLAP.

o Automata-based Programming: Use coding assignments where students
implement automata algorithms or grammars in their favorite programming language
(e.g., writing a program to simulate a DFA or NFA).

 Role Play: For complex concepts, have students "become" the automata, grammars, or
machines, physically walking through transitions to help visualize concepts like state
changes in a DFA or parsing a string using a CFG.

 Concept Maps: Encourage students to create mind maps or concept maps for topics like
finite automata, regular expressions, context-free grammars, etc., which show the
connections between different concepts.

5. Flipped Classroom

 How It Works: The idea is that students learn the basic concepts outside of class (via
readings, videos, or online resources like NPTEL), and class time is used for active
problem-solving and discussions.

 How to Apply:
o Provide short introductory videos or readings on the topic of the day.
o In class, engage students in solving problems related to the topic, discuss real-world

applications, and troubleshoot any confusions.
o Incorporate peer discussions and group work to help students collaborate on complex

problems.

6. Interactive Online Learning Platforms

 Tools: Platforms like Khan Academy, Coursera, Udacity, or edX can provide online
resources, interactive exercises, and quizzes that allow students to learn at their own pace.

 Benefits: Students can revisit tough topics, complete interactive quizzes, and engage with a
variety of resources such as animations, simulations, and hands-on coding exercises.

7. Project-Based Learning

 Approach: Assign a project that requires students to apply what they've learned to real-
world problems, such as creating a simple compiler or developing a software tool that
recognizes regular languages or simulates a Turing machine.

 How to Implement:
o Divide students into teams and assign them a problem or project that involves

multiple concepts (e.g., developing a finite automaton to recognize a specific
language).

o Provide periodic feedback and encourage collaboration.
o Have students present their projects at the end of the semester, explaining their

approach and solutions.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 20

8. Collaborative Learning (Peer Learning)

 Group Work: Organize students into groups to discuss difficult topics (e.g., design an
automaton for a particular language or prove a language is context-free).

 Peer Teaching: Encourage students who grasp concepts faster to explain them to their peers
in simple terms.

 Study Groups: Organize informal study groups where students can work together to solve
problems, learn from each other, and get support from the teacher when necessary.

9. Use of Animation/Visualization Tools

 Simulations of Automata: Tools like JFLAP or web-based simulators can show state
transitions in real-time, which helps students visualize the concepts they are learning.

 Automata in Action: Use animations or video clips that demonstrate how finite state
machines process input strings, or how context-free grammars generate languages.

10. Incorporating Coding

 Code along: Students can write code to implement finite automata, Turing machines, or
parsers in various programming languages (e.g., Python, Java, or C++).

 Project Examples: Have them write simple regex parsers, or create a language recognizer
using finite automata, to give practical exposure to theoretical concepts.

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 21

LESSON PLAN

Department of Computer Science & Engineering

LESSON PLAN & DELIVERY REPORT

Subject: AUTOMATA THEORY AND COMPILER DESIGN [CS305PC] Class: B.Tech II CSM

Regulation: R22

Academic Year: 2024-25 (II-Sem) Commencement of Class Work: 16-12-24

UNIT I Introduction to Finite Automata, DFA,NFA (No. of Lectures –12)

Topics
(as per
syllabus)

Sub Topics Lect.
No.

Scheduled
Date

Topic
Delivered
Date

 About Subject & Guidelines
 Vision, Mission, CO’s of subject
 Text & Reference Books

L1 19.12.24

Introduction
to Finite
Automata

 Introduction to Finite Automata: L2 20.12.24

 Automata and Complexity L3 23.12.24

 Central Concepts of Automata
Theory – Alphabets L4

24.12.24
 Strings, Languages, Problems L5 27.12.24

Nondetermin
istic Finite
Automata

 Nondeterministic Finite Automata L6 30.12.24

 Formal Definition, an application,
Text Search L7 31.12.24

 Finite Automata with Epsilon-
Transitions

L8 02.01.25

Deterministic
Finite
Automata

 Definition of DFA, How A DFA
Process Strings, L9 03.01.25

 The language of DFA, Conversion
of NFA with €-transitions to NFA
without €-transitions



L10 06.01.25

 Conversion of NFA to DFA L11 07.01.25

Test  Slip Test L12 08.01.25

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 22

Topics
(as per
syllabus)

Sub Topics Lect.
No. 09.01.25

Topic
Delivered
Date

UNIT II: RE, Pumping Lemma for Regular Languages, Context-Free Grammars (No. of
Lectures – 12)

Regular
Expressions

 Finite Automata and Regular
Expressions L13 17.01.25

 Applications of Regular
Expressions L14 20.01.25

 Algebraic Laws for Regular
Expressions L15 21.01.25

 Conversion of Finite Automata to
Regular Expressions L16 22.01.25

Pumping
Lemma for
Regular
Languages

 Statement of the pumping lemma L17 23.01.25

 Applications of the Pumping
Lemma L18 27.01.25

Context-Free
Grammars

 Definition of Context-Free
Grammars L19 28.01.25

 Derivations Using a Grammar,
Leftmost and Rightmost
Derivations

L20 29.01.25

 The Language of a Grammar L21 30.01.25

 Parse Trees L22 31.01.25

 Ambiguity in Grammars and
Languages L23 03.02.25

Test  Slip Test L24 04.02.25

UNIT – III PDA, TM, Undecidability: (No. of Lectures – 12)

Push Down
Automata

 Push Down Automata: Definition of
the Pushdown Automaton,

L25 06.02.25

 the Languages of a PDA,
Equivalence of PDA and CFG‟s L26 07.02.25

 Acceptance by final state L27 08.02.25

Turing
Machines

 Introduction to Turing Machine,
Formal Description

L28 10.02.25

 Instantaneous description L29 11.02.25

Mid I Schedule: ATCD Mid I Exam

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 23

Turing
Machines:  The language of a Turing machine L30 Mid I Exam

(ATCD) :

Undecidabilit
y  Undecidability L31 18.02.25

Mid I
Marks
Distribution

 Marks Distribution
 Discussion about Paper
 Counsel the students (AB/got poor

marks)

L32 19.02.25

Undecidabilit
y

 A Language that is Not Recursively
Enumerable, L33 21.02.25

 An Undecidable Problem That is
RE, L34 24.02.25

 Undecidable Problems about
Turing Machines L35 25.02.25

 Slip Test L36 27.02.25

Topics
(as per
syllabus)

Sub Topics Lect.
No.

Scheduled
Date

Topic
Delivered
Date

UNIT – IV Compiler , Lexical Analysis , Parsing Techniques: (No. of Lectures – 11)

Lexical
Analysis

 Introduction: The structure of a
compiler, L37 04.03.25

 Lexical Analysis: The Role of the
Lexical Analyzer L38 05.03.25

 Input Buffering L39 06.03.25

 Recognition of Tokens L40 07.03.25

 The Lexical- Analyzer Generator
Lex, L41 10.03.25

Syntax
Analysis

 Introduction, Context-Free
Grammars, L42 12.03.25

Syntax
Analysis

 Top-Down Parsing, L43 14.03.25

 Bottom- Up Parsing, L44 17.03.25

 Introduction to LR Parsing: Simple
LR L45

18.03.25

 More Powerful LR Parsers L46 19.03.25

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 24

 Slip Test L47 04.03.25

UNIT – V Syntax-Directed Translation, Intermediate-Code Generation ,Run-Time
Environments

(No. of Lectures – 11)

Syntax-
Directed
Translation

 Syntax-Directed Definitions L48 20.03.25

 Evaluation Orders for SDD's L49 21.03.25

 Syntax- Directed Translation
Schemes L50 24.03.25

 Implementing L-Attributed SDD's. L51 25.03.25

 Intermediate-Code Generation:
Variants of Syntax Trees, L52 26.03.25

 Three-Address Code
 Run-Time Environments: L53 27.03.25

Run-Time
Environment
s

 Stack Allocation of Space L54 28.03.25

 Access to Nonlocal Data on the
Stack L55 02.04.25

 Heap Management L56 03.04.25

 Slip test L57 04.04.25
 Marks Distribution
 Discussion about Paper
 Counsel the students (AB/got poor
marks)

L58 07.04.25

Mid II Schedule: ATCD Mid II Exam

Faculty HOD

LECTURE NOTES

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 25

UNIT-1

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 26

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 27

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 28

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 29

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 30

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 31

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 32

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 33

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 34

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 35

Deptof CSE(AI&ML) Balaji Institute of Technology &Science 36

FORMALLANGUAGESANDAUTOMATATHEORY

Page37

FORMALLANGUAGESANDAUTOMATATHEORY
Page38

FORMALLANGUAGESANDAUTOMATATHEORY
Page39

FORMALLANGUAGESANDAUTOMATATHEORY
Page40

FORMALLANGUAGESANDAUTOMATATHEORY
Page41

FORMALLANGUAGESANDAUTOMATATHEORY
Page42

FORMALLANGUAGESANDAUTOMATATHEORY
Page43

FORMALLANGUAGESANDAUTOMATATHEORY
Page44

FORMALLANGUAGESANDAUTOMATATHEORY
Page45

AUTOMATA THEORY AND COMPILER DESIGN

Page46

Unit-II

AUTOMATA THEORY AND COMPILER DESIGN

Page47

AUTOMATA THEORY AND COMPILER DESIGN

Page48

AUTOMATA THEORY AND COMPILER DESIGN

Page49

AUTOMATA THEORY AND COMPILER DESIGN

Page50

AUTOMATA THEORY AND COMPILER DESIGN

Page51

AUTOMATA THEORY AND COMPILER DESIGN

Page52

AUTOMATA THEORY AND COMPILER DESIGN

Page53

AUTOMATA THEORY AND COMPILER DESIGN

Page54

AUTOMATA THEORY AND COMPILER DESIGN

Page55

AUTOMATA THEORY AND COMPILER DESIGN

Page56

AUTOMATA THEORY AND COMPILER DESIGN

Page57

AUTOMATA THEORY AND COMPILER DESIGN

Page58

AUTOMATA THEORY AND COMPILER DESIGN

Page59

AUTOMATA THEORY AND COMPILER DESIGN

Page60

AUTOMATA THEORY AND COMPILER DESIGN

Page61

AUTOMATA THEORY AND COMPILER DESIGN

Page62

AUTOMATA THEORY AND COMPILER DESIGN

Page63

AUTOMATA THEORY AND COMPILER DESIGN

Page64

AUTOMATA THEORY AND COMPILER DESIGN

Page65

AUTOMATA THEORY AND COMPILER DESIGN

Page66

Unit-3

AUTOMATA THEORY AND COMPILER DESIGN

Page67

AUTOMATA THEORY AND COMPILER DESIGN

Page68

AUTOMATA THEORY AND COMPILER DESIGN

Page69

AUTOMATA THEORY AND COMPILER DESIGN

Page70

AUTOMATA THEORY AND COMPILER DESIGN

Page71

AUTOMATA THEORY AND COMPILER DESIGN

Page72

AUTOMATA THEORY AND COMPILER DESIGN

Page73

AUTOMATA THEORY AND COMPILER DESIGN

Page74

AUTOMATA THEORY AND COMPILER DESIGN

Page75

AUTOMATA THEORY AND COMPILER DESIGN

Page76

AUTOMATA THEORY AND COMPILER DESIGN

Page77

AUTOMATA THEORY AND COMPILER DESIGN

Page78

AUTOMATA THEORY AND COMPILER DESIGN

Page79

AUTOMATA THEORY AND COMPILER DESIGN

Page80

AUTOMATA THEORY AND COMPILER DESIGN

Page81

AUTOMATA THEORY AND COMPILER DESIGN

Page82

AUTOMATA THEORY AND COMPILER DESIGN

Page83

AUTOMATA THEORY AND COMPILER DESIGN

Page84

AUTOMATA THEORY AND COMPILER DESIGN

Page85

AUTOMATA THEORY AND COMPILER DESIGN

Page86

AUTOMATA THEORY AND COMPILER DESIGN

Page87

AUTOMATA THEORY AND COMPILER DESIGN

Page88

AUTOMATA THEORY AND COMPILER DESIGN

Page89

AUTOMATA THEORY AND COMPILER DESIGN

Page90

AUTOMATA THEORY AND COMPILER DESIGN

Page91

AUTOMATA THEORY AND COMPILER DESIGN

Page92

AUTOMATA THEORY AND COMPILER DESIGN

Page93

AUTOMATA THEORY AND COMPILER DESIGN

Page94

AUTOMATA THEORY AND COMPILER DESIGN

Page95

AUTOMATA THEORY AND COMPILER DESIGN

Page96

AUTOMATA THEORY AND COMPILER DESIGN

Page97

AUTOMATA THEORY AND COMPILER DESIGN

Page98

AUTOMATA THEORY AND COMPILER DESIGN

Page99

AUTOMATA THEORY AND COMPILER DESIGN

Page100

AUTOMATA THEORY AND COMPILER DESIGN

Page101

AUTOMATA THEORY AND COMPILER DESIGN

Page102

AUTOMATA THEORY AND COMPILER DESIGN

Page103

AUTOMATA THEORY AND COMPILER DESIGN

Page104

AUTOMATA THEORY AND COMPILER DESIGN

Page105

AUTOMATA THEORY AND COMPILER DESIGN

Page106

AUTOMATA THEORY AND COMPILER DESIGN

Page107

AUTOMATA THEORY AND COMPILER DESIGN

Page108

AUTOMATA THEORY AND COMPILER DESIGN

Page109

AUTOMATA THEORY AND COMPILER DESIGN

Page110

AUTOMATA THEORY AND COMPILER DESIGN

Page111

AUTOMATA THEORY AND COMPILER DESIGN

Page112

AUTOMATA THEORY AND COMPILER DESIGN

Page113

AUTOMATA THEORY AND COMPILER DESIGN

Page114

AUTOMATA THEORY AND COMPILER DESIGN

Page115

AUTOMATA THEORY AND COMPILER DESIGN

Page116

AUTOMATA THEORY AND COMPILER DESIGN

Page117

AUTOMATA THEORY AND COMPILER DESIGN

Page118

AUTOMATA THEORY AND COMPILER DESIGN

Page119

AUTOMATA THEORY AND COMPILER DESIGN

Page120

AUTOMATA THEORY AND COMPILER DESIGN

Page121

AUTOMATA THEORY AND COMPILER DESIGN

Page122

AUTOMATA THEORY AND COMPILER DESIGN

Page123

AUTOMATA THEORY AND COMPILER DESIGN

Page124

AUTOMATA THEORY AND COMPILER DESIGN

Page125

AUTOMATA THEORY AND COMPILER DESIGN

Page126

AUTOMATA THEORY AND COMPILER DESIGN

Page127

AUTOMATA THEORY AND COMPILER DESIGN

Page128

AUTOMATA THEORY AND COMPILER DESIGN

Page129

AUTOMATA THEORY AND COMPILER DESIGN

Page130

AUTOMATA THEORY AND COMPILER DESIGN

Page131

AUTOMATA THEORY AND COMPILER DESIGN

Page132

AUTOMATA THEORY AND COMPILER DESIGN

Page133

AUTOMATA THEORY AND COMPILER DESIGN

Page134

AUTOMATA THEORY AND COMPILER DESIGN

Page135

AUTOMATA THEORY AND COMPILER DESIGN

Page136

AUTOMATA THEORY AND COMPILER DESIGN

Page137

AUTOMATA THEORY AND COMPILER DESIGN Page138

AUTOMATA THEORY AND COMPILER DESIGN Page139

TargetProgram

UNIT-IV

INTRODUCTION TO LANGUAGE ROCESSING:

AsComputersbecameinevitableandindigenouspartofhumanlife,andseverallanguages

withdifferentandmoreadvancedfeaturesareevolvedintothisstreamtosatisfyorcomforttheuser in

communicating with the machine , the development of the translators or mediator Software‘s

have become essential to fill the huge gap between the human and machine understanding. This

process is called Language Processing to reflect the goal and intent of the process. On the wayto

this process to understand it in a better way, we have to be familiar with some key terms and

concepts explained in following lines.

LANGUAGETRANSLATORS:

Is a computer program which translates a program written in one (Source) language to its

equivalentprograminother[Target]language.TheSourceprogramisahighlevellanguagewhereas the

Target language can be any thing from the machine language of a target machine (between

Microprocessor to Supercomputer) to another high level languageprogram.

TwocommonlyUsed Translators areCompilerandInterpreter
1. Compiler : Compilerisaprogram,readsprograminonelanguagecalledSourceLanguage

andtranslatesintoitsequivalentprograminanotherLanguagecalledTargetLanguage,in
addition to this its presents the error information to the User.

 Ifthetargetprogramisanexecutablemachine-languageprogram,itcanthenbecalledby the
users to process inputs and produce outputs.

Input Output

Figure1.1:RunningthetargetProgram

AUTOMATA THEORY AND COMPILER DESIGN Page140

Interpreter

2. Interpreter:Aninterpreterisanothercommonlyusedlanguageprocessor.Insteadofproducing a
target program as a single translation unit, an interpreter appears to directly execute the
operations specified in the source program on inputs supplied by theuser.

Source Program

Input Output

Figure1.2:RunningthetargetProgram

LANGUAGE PROCESSING SYSTEM:

Basedontheinputthetranslatortakesandtheoutputitproduces,alanguagetranslatorcanbe called as
any one of the following.

Preprocessor:Apreprocessortakestheskeletalsourceprogramasinputandproducesanextended
version of it, which is the resultant of expanding the Macros, manifest constants if any, and
includingheader files etc in thesourcefile. For example, the C preprocessor is amacro processor
thatisusedautomaticallybytheCcompilertotransformoursourcebeforeactualcompilation.Over and
above a preprocessor performs the following activities:

 Collectsallthemodules,filesincaseifthesourceprogramisdividedintodifferentmodules stored
at different files.

 Expandsshorthands/ macrosintosourcelanguagestatements.

Compiler: Is a translator that takes as input a source program written in high level language and
convertsitintoitsequivalenttarget programinmachinelanguage.Inadditiontoabovethecompiler also

Reportstoitsuserthepresenceoferrorsinthesourceprogram.

Facilitatestheuserinrectifyingtheerrors,andexecutethecode.

Assembler:Isaprogramthattakesasinputanassemblylanguageprogramandconvertsitintoits equivalent
machine language code.

Loader/Linker:Thisisaprogramthattakesasinputarelocatablecodeandcollectsthelibrary functions,
relocatable object files, and produces its equivalent absolute machine code.

Specifically,

Loadingconsistsoftakingtherelocatablemachinecode,alteringtherelocatableaddresses, and
placing the altered instructions and data in memoryat the proper locations.

Linking allows us to make a single program from several files of relocatable machine code.
These files may have been result of several different compilations, one or moremaybe
libraryroutines provided bythe system available to any program that needs them.

AUTOMATA THEORY AND COMPILER DESIGN Page141

Loader/Linker

Compiler

In addition to these translators, programs like interpreters, text formatters etc., may be used in
language processing system. To translate a program in a high level language program to an
executable one, the Compiler performs by default the compile and linking functions.

Normally the steps in a language processing system includes Preprocessing the skeletal Source
program which produces an extended or expanded source program or a ready to compile unit of
the source program, followed by compiling the resultant, then linking / loading , and finally its
equivalent executable code is produced. As I said earlier not all these steps are mandatory. In
some cases, the Compiler only performs this linking and loading functions implicitly.

The steps involved in a typical language processing system can be understood with following
diagram.

SourceProgram [Example:filename.C]

Preprocessor

ModifiedSourceProgram [Example:filename.C]

TargetAssemblyProgram

Assembler

RelocatableMachineCode[Example:filename.obj]

Library files

RelocatableObjectfiles

TargetMachineCode [Example:filename.exe]

Figure1.3:ContextofaCompilerinLanguageProcessingSystem

AUTOMATA THEORY AND COMPILER DESIGN Page142

PHASES OF A COMPILER:

Due to the complexity of compilation task, a Compiler typically proceeds in a Sequence of
compilation phases. The phases communicate with each other via clearly defined interfaces.
Generally an interface contains a Data structure (e.g., tree), Set of exported functions.Each phase
works on an abstract intermediate representation of the source program, not the source
program text itself (except the first phase)

Compiler Phases are the individual modules which are chronologicallyexecuted to perform their
respective Sub-activities, and finally integrate the solutions to give target code.

It is desirable to have relatively few phases, since it takes time to read and write immediate files.
Followingdiagram (Figure1.4) depicts the phases of a compiler through which it goes duringthe
compilation. There fore a typical Compiler is having the following Phases:

1.LexicalAnalyzer(Scanner),2.SyntaxAnalyzer(Parser),3.SemanticAnalyzer,
4.Intermediate Code Generator(ICG), 5.Code Optimizer(CO) , and 6.Code
Generator(CG)

In addition to these, it also has Symbol table management, and Error handler phases. Not all
the phases are mandatory in every Compiler. e.g, Code Optimizer phase is optional in some

cases.
Thedescription isgiven innext section. The Phases of compiler divided in to two parts, first three phases
we are called as Analysis part remaining three called as Synthesis part.

AUTOMATA THEORY AND COMPILER DESIGN Page143

Figure1.4:PhasesofaCompiler

PHASE,PASSESOFACOMPILER:

In some application we can have a compiler that is organized into what is called passes.

Where a pass is a collection of phases that convert the input from one representation to a

completely deferent representation. Each pass makes a complete scan of the input and produces

its output to be processed by the subsequent pass. For example a two pass Assembler.

AUTOMATA THEORY AND COMPILER DESIGN Page144

THEFRONT-END& BACK-ENDOFACOMPILER

All of these phases of a general Compiler are conceptually divided into The Front-end,

and The Back-end. This division is due to their dependence on either the Source Language orthe

Target machine. This model is called an Analysis & Synthesis model of a compiler.

The Front-end of the compiler consists of phases that depend primarily on the Source

language and are largely independent on the target machine. For example, front-end of the

compiler includes Scanner, Parser, Creation of Symbol table, Semantic Analyzer, and the

Intermediate Code Generator.

The Back-end of the compiler consists of phases that depend on the target machine, and

thoseportionsdon‘tdependentontheSourcelanguage,justthe Intermediatelanguage.Inthiswe have

different aspects of Code Optimization phase, code generation along with the necessary Error

handling, and Symbol table operations.

LEXICAL ANALYZER(SCANNER):TheScanneristhefirstphasethatworksasinterface
betweenthe compilerandtheSourcelanguageprogramandperformsthefollowingfunctions:

Reads the characters in the Source program and groups them into a stream of tokens in
which each token specifies a logically cohesive sequence of characters, such as an
identifier , a Keyword , a punctuation mark, a multi character operator like := .

 Thecharactersequenceformingatoken iscalledalexemeofthetoken.

 TheScannergeneratesatoken-id,andalsoentersthatidentifiersnameintheSymbol table if
it doesn‘t exist.

 Alsoremoves theComments, and unnecessaryspaces.

Theformat ofthetoken is < Tokenname, Attributevalue>

SYNTAX ANALYZER(PARSER):TheParserinteractswiththeScanner,anditssubsequent phase
Semantic Analyzer and performs the following functions:

 Groupstheabovereceived,andrecordedtokenstreamintosyntacticstructures,usually into a
structure called Parse Tree whose leaves are tokens.

 Theinteriornodeofthistreerepresentsthestreamoftokensthatlogicallybelongs

AUTOMATA THEORY AND COMPILER DESIGN Page145

together.

 Itmeansitchecksthesyntax ofprogramelements.

SEMANTICANALYZER: This phase receives the syntax tree as input, and checksthe
semanticallycorrectnessoftheprogram.Thoughthetokensarevalidandsyntacticallycorrect,it

may happen that they are not correct semantically. Therefore the semantic analyzer checks
thesemantics (meaning) of the statements formed.

 TheSyntacticallyandSemanticallycorrectstructuresareproducedhereintheformofa Syntax
tree or DAG or some other sequential representation like matrix.

INTERMEDIATE CODE GENERATOR(ICG): This phase takes the syntactically and
semantically correct structure as input, and produces its equivalent intermediate notation of the
source program. The Intermediate Code should have two important properties specified below:

 Itshouldbeeasytoproduce,andEasytotranslateintothetargetprogram.Example
intermediate code forms are:

 Threeaddress codes,

 Polishnotations,etc.

CODE OPTIMIZER: This phase is optional in some Compilers, but so useful and beneficial in
terms of saving development time, effort, and cost. This phase performs the following specific
functions:

Attempts to improve the IC so as to have a faster machine code. Typical functionsinclude –
Loop Optimization, Removal of redundant computations, Strength reduction, Frequency
reductions etc.

 Sometimesthedatastructuresusedinrepresentingtheintermediateformsmayalsobe
changed.

CODE GENERATOR: This is the final phase of the compiler and generates the target code,
normally consisting of the relocatable machine code or Assembly code or absolute machinecode.

 Memorylocationsareselectedforeachvariableused,andassignmentofvariablesto
registers is done.

 Intermediateinstructionsaretranslatedintoasequenceofmachine instructions.

TheCompileralsoperformstheSymboltablemanagementandErrorhandlingthroughoutthe
compilation process. Symbol table is nothing but a data structure that stores different source

AUTOMATA THEORY AND COMPILER DESIGN Page146

language constructs, and tokens generated during the compilation. These two interact with all
phases of the Compiler.

AUTOMATA THEORY AND COMPILER DESIGN Page147

Forexamplethesourceprogramisanassignmentstatement;thefollowingfigureshowshowthe phases of
compiler will process the program.

Theinput sourceprogram isPosition=initial+rate*60

Figure1.5:TranslationofanassignmentStatement

AUTOMATA THEORY AND COMPILER DESIGN Page148

LEXICALA NALYSIS:

As the first phase of a compiler, the main task ofthelexical analyzeristo read the input
characters of the source program, group them into lexemes, and produce as output tokens for
each lexeme in the source program. This stream of tokens is sent to the parser for syntax analysis.
It is common for the lexical analyzer to interact with the symbol table as well.

When the lexical analyzer discovers a lexeme constituting an identifier,it needstoenter
that lexeme into the symbol table. This process is shown in the followingfigure.

Figure1.6:LexicalAnalyzer

. When lexical analyzer identifies the first token it will send it to the parser, the parser
receives the token and calls the lexical analyzer to send next token by issuing the getNextToken()
command. This Process continues until the lexical analyzer identifies all the tokens. During this
process the lexical analyzer will neglect or discard the white spaces and comment lines.

TOKENS,PATTERN SAND LEXEMES:

A token is a pair consisting of a tokennameandan optional attribute value.The token name is an
abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a sequence of
input characters denoting an identifier. The token names are the input symbols that the parser
processes. In what follows, we shall generally write the name of a token in boldface. We will
often refer to a token by its token name.

A pattern is a description of the form that the lexemes of a token may take [or match]. In the
case of a keyword as a token, the pattern is just the sequence of characters that form the keyword.
For identifiers and some other tokens, the pattern is a more complex structure that is matched by
many strings.

AUTOMATA THEORY AND COMPILER DESIGN Page149

Alexemeisasequenceofcharactersinthesourceprogramthatmatchesthepatternfora token and is identified by the
lexical analyzer as an instance of that token.

Example:InthefollowingClanguagestatement, printf

("Total = %d\n‖, score) ;

both printf and scoreare lexemes matchingthepatternfortokenid, and "Total=%d\n‖ is a
lexeme matching literal [or string].

Figure1.7:ExamplesofTokens

LEXICAL ANALYSIS Vs PARSING:

Thereareanumberofreasonswhytheanalysisportionofacompilerisnormallyseparatedinto lexical
analysis and parsing (syntax analysis) phases.

1. Simplicity of design is the most important consideration. The separation of Lexical
and Syntactic analysis often allows us to simplify at least one of these tasks. Forexample,
a parser that had to deal with comments and whitespace as syntactic unitswould be
considerably more complex than one that can assume comments andwhitespace have
already been removed by the lexicalanalyzer.

2. Compiler efficiency is improved. A separate lexical analyzer allows us to apply
specialized techniques that serve only the lexical task, not the job of parsing. In addition,
specialized buffering techniques for reading input characters can speed up the compiler
significantly.

3.Compilerportabilityisenhanced:Input-device-specificpeculiaritiescanbe restricted to
the lexical analyzer.

AUTOMATA THEORY AND COMPILER DESIGN Page150

INPUTBUFFERING:

Before discussing the problem of recognizinglexemesin the input,let us examine some
ways that the simple but important task of reading the source program canbe speeded. This task
is made difficult by the fact that we often have to look one or more characters beyond the next
lexeme before we can be sure we have the right lexeme. There are many situationswhere we need
to look at least one additional character ahead. For instance, we cannot be sure we've seen the
end of an identifier until we see a character that is not a letter or digit, and therefore is not part of
the lexeme forid.InC, single-characteroperators like-,=,or< could also be the beginning of a two-
character operator like ->, ==, or <=. Thus, we shall introduce a two-buffer scheme that handles
large look aheads safely. We then consider an improvement involving "sentinels" that saves time
checking for the ends of buffers.

Buffer Pairs

Because of the amount of time taken to process characters and the large number of charactersthat
must be processed during the compilation of a large source program, specialized buffering
techniques have been developed to reduce the amount of overhead required to process a single
input character. An important scheme involves two buffers that are alternately reloaded.

Figure1.8 :UsingaPairof InputBuffers

Each buffer is of the same size N, and N is usually the size of a disk block, e.g., 4096
bytes. Using one system readcommand we canread Ncharacters in to a buffer, rather than using
one system call per character. If fewer than N characters remain in the input file, then a special
character, represented by eof, marks the end of the source file and is different from any possible
character of the source program.

 Twopointers tothe inputaremaintained:

1. ThePointerlexemeBegin,marksthebeginningofthecurrentlexeme,whoseextent we
are attempting to determine.

2. Pointer forward scans ahead until a pattern match is found; the exact strategy
wherebythisdeterminationismadewillbecoveredinthebalanceofthischapter.

AUTOMATA THEORY AND COMPILER DESIGN Page151

Once the next lexeme is determined, forward is set to the character at its right end. Then,

after the lexeme is recorded as an attribute value of a token returned to the parser, 1exemeBegin

is set to the character immediatelyafter the lexeme just found. In Fig, we see forward has passed

the end of the next lexeme, ** (the FORTRAN exponentiation operator), and must be retracted

one position to its left.

Advancing forward requires that we first test whether we have reachedthe end ofoneof

the buffers, and if so, we must reload the other bufferfromthe input, and move forward to the

beginning of the newly loaded buffer. As long as we never need to look so far ahead of the actual

lexeme that the sumof the lexeme'slengthplusthe distance welookahead isgreater than N, we shall

never overwrite the lexeme in its buffer before determining it.

SentinelsToImproveScanners Performance:

If we use the above scheme as described, we must check, each time we advance forward,

that we have not moved off one of the buffers; if we do, then we must also reload the other buffer.

Thus, for each character read, we make two tests: one for the end of the buffer, and oneto

determine what character is read (the latter may be a multi way branch). We can combine the

buffer-end test with the test for the current character if we extend each buffer to hold a sentinel

character at the end. The sentinel is a special character that cannot be part of the source program,

and a natural choice is the character eof. Figure 1.8 shows the same arrangement as Figure 1.7,

but with the sentinels added. Note that eof retains its use as a marker for the end of the entire

input.

Figure1.8:Sententialattheendof eachbuffer

Anyeofthatappearsotherthanattheendofabuffermeansthattheinput isatanend.Figure1.9
summarizes the algorithm for advancing forward. Notice how the first test, which can be part of

AUTOMATA THEORY AND COMPILER DESIGN Page152

amultiwaybranchbased onthecharacterpointedtobyforward,istheonlytestwemake,except in the
case where we actually are at the end of a buffer or the end of the input.

switch(*forward++)

{

caseeof:if(forwardisatendof firstbuffer)

{

reloadsecondbuffer;

forward=beginningofsecond buffer;

}

elseif (forwardisatend of secondbuffer)

{

break;

}

reloadfirst buffer;

forward=beginningof first buffer;

}

else /*eofwithinabuffermarkstheendofinput*/

terminate lexical analysis;

Figure1.9:useof switch-caseforthesentential

153

Declarations

%%

Translation rules

%%

Auxiliaryfunctionsdefinitions

SPECIFICATIONOF TOKENS:

Regular expressions are an important notation for specifying lexeme patterns. While they cannot express
allpossiblepatterns,theyareveryeffectiveinspecifyingthosetypesofpatternsthat weactuallyneedfor tokens.

LEXtheLexicalAnalyzer generator

Lex is a tool used to generate lexical analyzer, the input notation for the Lex tool is
referred to as the Lex language and the tool itself is the Lex compiler. Behind the scenes, theLex
compiler transforms theinputpatterns into a transition diagram and generates code, in a
filecalledlex.yy.c,itisacprogramgivenforCCompiler,givestheObjectcode.Hereweneed to know
how to write the Lex language. The structure of the Lex program is givenbelow.

Structureof LEXProgram: A Lex programhasthefollowingform:

Thedeclarationssection:includesdeclarationsofvariables,manifestconstants(identifiers
declaredtostandforaconstant,e.g.,thenameofatoken),andregulardefinitions.Itappears
between %{. . .%}

IntheTranslationrulessection,WeplacePatternActionpairswhereeachpairhavetheform Pattern

{Action}

Theauxiliaryfunctiondefinitionssectionincludesthedefinitionsoffunctionsusedtoinstall
identifiers and numbers in the Symbol tale.

LEXProgramExample:

%{

/*definitionsofmanifestconstantsLT,LE,EQ,NE,GT,GE,IF,THEN,ELSE,ID,NUMBER,
RELOP */

%}

/*regulardefinitions */

delim [\t\n]

154

Ws { delim}+

letter [A-Za-z]

digit [o-91

Id {letter}({letter} |{digit})*

number {digit}+(\. {digit}+)?(E[+-I]?{digit}+)?

%%

{ws} {/*no actionand noreturn */}

If {return(1F);}

then {return(THEN);}

else {return(ELSE);}

(id) {yylval=(int)installID(); return(1D);}

(number) {yylval=(int)installNum();return(NUMBER);}

‖<‖ {yylval=LT; return(REL0P);)}

―<=‖ {yylval=LE; return(REL0P);}

―=‖ {yylval=EQ;return(REL0P);}

―<>‖ {yylval= NE;return(REL0P);}

―<‖ {yylval=GT;return(REL0P);)}

―<=‖ {yylval=GE;return(REL0P);}

%%

intinstallID0(){/*functionto installthelexeme,whosefirstcharacterispointedtobyyytext, and

whose length is yyleng, into the symbol table and return apointer thereto */

intinstallNum(){/*similartoinstallID,butputsnumericalconstantsinto aseparatetable*/}

Figure1.10:LexProgramfortokenscommontokens

155

SYNTAX ANALYSIS(PARSER)

THEROLEOFTHE PARSER:

In our compiler model, the parser obtains astring oftokens fromthelexical analyzer, as
shown inthe below Figure,and verifiesthatthestringoftoken names canbe generated by
thegrammarforthesource language.We expect the parser to report any syntaxerrors in an
intelligible fashion and to recover from commonlyoccurring errors to continue processing the
remainder of the program. Conceptually, for well-formed programs, the parser constructs a parse
tree and passes it to the rest of the compiler for further processing.

Figure2.1:Parserin theCompiler

Duringtheprocessofparsingitmayencountersomeerrorandpresenttheerrorinformationback to the
user

Syntacticerrorsincludemisplacedsemicolonsorextraormissingbraces;thatis,
―{" or "}."Asanother example, in CorJava,the appearance ofacasestatementwithout anenclosing
switchisasyntactic error(however,thissituationisusually allowedbythe parser and caught later in
the processing, as the compiler attempts to generate code).

Basedontheway/ordertheParseTreeisconstructed,Parsingisbasicallyclassifiedinto following
two types:

1. TopDownParsing:Parsetreeconstructionstartattherootnodeandmovestothe
children nodes (i.e., top down order).

2. BottomupParsing:Parsetreeconstructionbeginsfromtheleafnodesandproceeds
towards the root node (called the bottom up order).

156

UNIT-V

RUNTIMESTORAGE MANAGEMENT:

To study the run-time storage management system it is sufficient to focus on the statements:
action, call, return and halt, because they by themselves give us sufficient insight into the
behavior shown by functions in calling each other and returning.

And the run-time allocation and de-allocation of activations occur on the call of functions and
when they return.

There are mainly two kinds of run-time allocation systems: Static allocation and Stack
Allocation. Whilestaticallocation is used bythe FORTRAN class of languages, stack allocation is
used by the Ada class of languages.

157

STATICALLOCATION: Inthis,Acallstatementisimplementedbyasequenceoftwo
instructions.

 Amoveinstructionsavesthereturn address
 Agototransferscontroltothetargetcode.

The instruction sequence is

MOV#here+20,callee.static-area

GOTO callee.code-area

callee.static-areaandcallee.code-areaareconstantsreferringtoaddressoftheactivationrecord and the
first address of called procedure respectively.

.#here+20inthemoveinstructionisthereturnaddress;theaddressoftheinstructionfollowing the goto
instruction

.Areturnfromprocedurecalleeisimplementedby

GOTO *callee.static-area

For the call statement, we need to save the return address somewhere and then jump tothe
location of the callee function. And to return from a function, we have to access the return
address as stored by its caller, and then jump to it. So for call, we first say: MOV #here+20,
callee.static-area. Here, #here refers to the location of the current MOV instruction, and
callee.static- area is a fixed location in memory. 20 is added to #here here, as the code
corresponding to the call instruction takes 20 bytes (at 4 bytes for each parameter: 4*3 for this
instruction, and 8 for the next). Then we say GOTO callee. code-area, to take us to the code of
the callee, as callee.codearea is merely the address where the code of the callee starts. Then a
return from the callee is implemented by: GOTO *callee.static area. Note that this works only
because callee.static-area is a constant.

Example:

.Assumeeach 100:ACTION-l
action 120: MOV140,364
blocktakes20 132:GOTO200
bytesof space 140:ACTION-2
.Start address 160: HALT
ofcodefor c :
andp is 200:ACTION-3
100and 200 220:GOTO*364

158

. The activation :
Records 300:
arestatically 304:
allocatedstarting :
ataddresses 364:
300and 364. 368:

This example corresponds to the code shown in slide 57. Statically we say that the code
for c starts at 100 and that for p starts at 200. At some point, c calls p. Using the strategy
discussed earlier, and assuming that callee.staticarea is at the memory location 364, we get the
code as given. Here we assume that a call to 'action' corresponds to a single machine instruction
which takes 20 bytes.

STACK ALLOCATION:.Position oftheactivationrecordis notknownuntilrun time

 .Positionisstoredinaregisteratruntime,andwordsintherecordareaccessedwithan offset
from the register

 .Thecodeforthefirstprocedureinitializesthestackbysetting upSPtothestartofthe stack area

MOV#Stackstart,SP

codeforthefirstprocedure

HALT

In stack allocation we do not need to know the position of the activation record until run-
time. This gives us an advantage over static allocation, as we can have recursion. So this is used
in many modern programming languages like C, Ada, etc. The positions of the activations are
stored in the stack area, and the position for the most recent activation is pointed to by the stack
pointer. Words in a record are accessed with an offset from the register. The code for the first
procedure initializes the stack by setting up SP to the stack area by the following command:
MOV #Stackstart, SP. Here, #Stackstart is the location in memory where the stack starts.

AprocedurecallsequenceincrementsSP,savesthereturnaddressandtransferscontroltothe called
procedure

ADD#caller.recordsize,SP

MOVE #here+ 16, *SP

GOTO callee.code_area

159

Consider the situation when a function (caller) calls the another function(callee), then
procedure call sequence increments SP by the caller record size, saves the return address and
transfers control to the callee by jumping to its code area. In the MOV instruction here, we only
need to add 16, as SP is a register, and so no space is needed to store *SP. The activations keep
getting pushed on the stack, so #caller.recordsize needs to be added to SP, to update the value of
SP to its new value. This works as #caller.recordsize is a constant for a function, regardless ofthe
particular activation being referred to.

DATASTRUCTURES:Followingdatastructures areusedtoimplementsymbol tables

LISTDATASTRUCTURE:Couldbeanarraybasedorpointerbasedlist.Butthis
implementation is

- Simplest to implement
- Useasingle arraytostorenames andinformation
- Searchfor anameislinear
- Entryandlookup areindependent operations
- Costofentryandsearchoperations areveryhighandlot oftimegoes intobook keeping

Hashtable:HashtableisadatastructurewhichgivesO(1)performanceinaccessingany element of
it. It uses the features of both array and pointer based lists.

-Theadvantagesareobvious

REPRESENTINGSCOPE INFORMATION

The entries in the symbol table are for declaration of names. When an occurrence of a name in
the source text is looked up in the symbol table, the entry for the appropriate declaration,
according to the scoping rules of the language, must be returned. A simple approach is to
maintain a separate symbol table for each scope.

Most closely nested scope rules can be implemented by adapting the data structuresdiscussed
in theprevious section. Each procedure is assigned auniquenumber. If thelanguageis block-
structured, the blocks must also be assigned unique numbers. The name is represented as a pair
of a number and a name. This new name is added to the symbol table. Most scope rules can be
implemented in terms of following operations:

a) Lookup- find themost recentlycreatedentry.
b) Insert-makeanew entry.
c) Delete-removethemostrecentlycreatedentry.
d) Symboltablestructure
e) .Assignvariablestostorageclassesthatprescribescope,visibility,andlifetime

160

f) -scoperulesprescribethesymbol tablestructure
g) -scope:unitof staticprogramstructure withone ormorevariabledeclarations
h) - scope maybenested
i) .Pascal:proceduresarescopingunits
j) .C: blocks,functions, filesarescopingunits
k) .Visibility,lifetimes,global variables
l) . Common (in Fortran)
m) .Automaticorstack storage
n) .Staticvariables
o) storage class : A storage class is an extra keyword at the beginning of a declaration

which modifies the declaration in some way. Generally, the storage class (if any) is the
first word in the declaration, preceding the type name. Ex. static, extern etc.

p) Scope: The scope of a variable is simply the part of the program where it may
beaccessed or written. It is the part of the program where the variable's name may be
used. If a variable is declared within a function, it is local to that function. Variables of
the same name may be declared and used within other functions without any conflicts.
For instance,

q) int fun1()
{

inta;
int b;
....

}

int fun2()
{

inta;
int c;
....

}

Visibility: The visibility of a variable determines how much of the rest of the program
canaccessthatvariable.Youcanarrangethatavariableisvisibleonlywithinonepartof one
function, or in one function, or in one source file, or anywhere in the program.

r) Local and Global variables: A variable declared within the braces {} of a function is
visible only within that function; variables declared within functions are called local
variables. On the other hand, a variable declared outside of any function is a global
variable , and it is potentially visible anywhere within the program.

s) Automatic Vs Static duration: How long do variables last? By default, local variables
(those declared within a function) have automatic duration: they spring into existence
whenthefunctioniscalled,andthey(andtheirvalues)disappearwhenthefunction

161

returns. Global variables, on the other hand, have static duration: theylast, and the values
stored in them persist, for as long as the program does. (Of course, the values can in
general still be overwritten, so they don't necessarily persist forever.) By default, local
variables have automatic duration. To give them static duration (so that, instead ofcoming
and going as the function is called, they persist for as long as the function does), you
precede their declaration with the static keyword: static int i; By default, adeclaration of a
global variable (especially if it specifies an initial value) is the defining instance. To make
it an external declaration, of a variable which is defined somewhere else, you precede it
with the keyword extern: extern int j; Finally, to arrange that a global variable is visible
only within its containing source file, you precede it with the static keyword: staticint k;
Noticethat thestatickeywordcan do two different things: it adjusts the duration of a local
variable from automatic to static, or it adjusts the visibility of a global variable from truly
global to private-to-the-file.

t) Symbol attributesandsymboltable entries
u) Symbolshaveassociated attributes
v) Typicalattributesarename,type, scope,size,addressingmode etc.
w) Asymboltableentrycollectstogetherattributessuchthattheycanbeeasilysetand

retrieved
x) Exampleoftypicalnamesinsymboltable

Name Type

name characterstring

class enumeration

size integer

type enumeration

LOCALSYMBOLTABLEMANAGEMENT :

Followingareprototypesoftypicalfunctiondeclarationsusedformanaginglocalsymboltable. The
right hand side of the arrows is the output of the procedure and the left side has the input.

NewSymTab : SymTab SymTab
DestSymTab : SymTab SymTab
InsertSym : SymTab X Symbol boolean
LocateSym:SymTabXSymbol boolean
GetSymAttr : SymTab X Symbol X Attr boolean
SetSymAttr:SymTabXSymbolXAttrXvalue boolean
NextSym : SymTab X Symbol Symbol
MoreSyms:SymTabXSymbol boolean

162

MID EXAMINATION QUESTION PAPER

MID-I Examination, FEB-2025

Course: B.Tech, Branch-CSM (A&B), Year & Semester: II-IISem

Subject: Automata Theory and compiler design Date: 12-02-2025

Duration: 2 Hour, Max Marks: 30

PART-A

Answer any four Questions Marks [20]

1. a) a finite automaton accepting all strings over {0, 1} having even number of 0’s and
even number of 1’s ?
b) Construct a finite automaton accepting all strings over {0, 1} starts with abb?

2. Construct a DFA for the regular expression (0+1)* using indirect method?

3. a) List down the Identity Rules for the Regular Expression?
b) Explain the Arden’s theorem?

4. Explain with an example about Minimization of the DFA?

5. What is Grammar ? Explain CFG with an example ?

6. Explain pumping lemma concept with an example ?

PART –B

Multiple choice questions Marks [5]

1. There are ________ tuples in finite state machine. []
a) 4
b) 5
c) 6
d) unlimited

2. Transition function maps. []
a) Σ * Q -> Σ
b) Q * Q -> Σ
c) Σ * Σ -> Q
d) Q * Σ -> Q

3. Number of states requires accepting string ends with 10. []
a) 3

163

b) 2
c) 1
d) can’t be represented.

4. Extended transition function is. []
a) Q * Σ* -> Q
b) Q * Σ -> Q
c) Q* * Σ* -> Σ
d) Q * Σ -> Σ

5. δ*(q,ya) is equivalent to . []

a) δ((q,y),a)
b) δ(δ*(q,y),a)
c) δ(q,ya)
d) independent from δ notation

6. String X is accepted by finite automata if [] .
a) δ*(q,x) E A
b) δ(q,x) E A
c) δ*(Q0,x) E A
d) δ(Q0,x) E A

7. Languages of a automata is []
a) If it is accepted by automata
b) If it halts
c) If automata touch final state in its life time
d) All language are language of automata

8. Language of finite automata is. []
a) Type 0
b) Type 1
c) Type 2
d) Type 3

9. Finite automata requires minimum _______ number of stacks.
a) 1
b) 0
c) 2
d) None of the mentioned

10. Number of final state require to accept Φ in minimal finite automata. []
a) 1
b) 2
c) 3
d) None of the mentioned

Fill in the Blanks Marks [5]

164

11. How many DFA’s exits with two states over input alphabet {0,1} ________________

12. The basic limitation of finite automata is that_________________

13. Moore Machine is an application of______________

14 . In Moore machine, output is produced over the change of________-

15. The finite automata is called NFA when there exists____________ for a specific input from
current state to next state

16. ε-closure of state is combination of self state and ________________

17. In mealy machine, the O/P depends upon_____________

18. The major difference between Mealy and Moore machine is about__________-

19. Mealy and Moore machine can be categorized as:

20.An e-NFA is ___________ tuple representation.

165

Previous year questions

166

UNIT WISE IMPORTANT QUESTIONS

AUTOMATA THEORY AND COMPILER DESIGN IMPORTANTQUESTIONS.

Unit-IV
SHORT QUESTIONS:

Definecompiler.
WhatisContextfreegrammar?
Definepre-processor.Whatarethe functionsof pre-processor?

What is input buffer?
Differentiatecompilerandinterpreter
What is input buffering?
Definethe followingterms:a)Lexemeb) Token
Defineinterpreter.
WhatarethedifferencesbetweentheNFA andDFA?

LONG questions:

Explainthe variousphasesof acompilerwith anillustrativeexample
DefineRegularexpression.ExplainthepropertiesofRegularexpressions.
Differentiatebetweentop downandbottomupparsing techniques.
ConstructanFA equivalenttotheregularexpression
(0+1)*(00+11)(0+1)*
Explainthe various phases of acompilerin detail. Alsowritedown theoutput forthefollowing
expression:position:=initial+rate* 60
ConstructanFA equivalenttotheregularexpression
10+(0+11)0*1
Defineaugmented grammar
ComparetheLRParsers.
CompareandcontrastLRand LLParsers
Differentiatebetweentop downparsers
DefineDeadcodeelimination?
Eliminateimmediateleftrecursionforthefollowinggrammar: E-
>E+T | T
T->T*F |F
F-> (E)| id

MentionthetypesofLR parser.

Explainbottomupparsingmethod

167

Discussinaboutleft recursionandleft factoringwith examples.
Constructthepredictiveparserforthefollowinggrammar S-
>(L)/a
L->L,S/S

CheckwhetherthefollowinggrammarisSLR(1)ornot.ExplainyouranswerwithReasons.
S→L=R
S→R
L→*R
L→id
R→L

ConstructSLRparsetablefor
S->L=R/R
R->L
L->*R/id

Stateandexplaintherulestocomputefirstandfollowfunctions E-
>E+T/T
T->T*F/F
F->F*/a/b

ConstructCLRparsetablefor
S->L=R/R
R->L
L->*R/id

ConstructtheLRParsingtableforthefollowinggrammar: EE + T
| T
TT*F|F F
 (E)/id

ConstructanLALRParsingtableforthefollowinggrammar: E->
E+T |T
T->T*F|F
F->id

FindtheSLRparsingtableforthegivengrammar: E-
>E+E | E*E | (E) | id.

Andparsethesentence(a+b)*

168

UNIT-5
SHORTQUESTIONS:

DefineTypeEquivalence
Explaintherole ofintermediatecodegeneratorincompilation process
Defineleftmostderivationandrightmostderivationwith example
Whatarethevarioustypesofintermediate code representation?
Writeanote onthespecification ofasimple typechecker.
Explainintermediatecode representations?
Definetype expression withan example?
Stategeneralactivation record?
Explaintype expressionandtype systems
LONGQUESTIONS:

Explainin briefabout equivalenceof typeexpressions with examples

Explainabout TypecheckingandTypeConversion with examples
Whatisathreeaddresscode?Mentionitstypes.Howwouldyouimplementthethree address
statements?Explainwithexamples.
Whatistypechecker?Explainthespecificationof asimpletype checker
Translatethefollowingexpression: (a
+ b) * (c + d) + (a + b + c) into
a)Quadruplesb)Triples
Constructaquadruple,triplesforthefollowingexpression: a
+a*(b-c)+(b-c)*d?

Explainvariousstorageallocationstrategieswithexamples.

Explainstaticandstackstorageallocations?

Writethe quadrupleforthefollowingexpression
(x +y)∗(y+z) +(x+y+z)
WhatisaDAG?Mentionits applications.
WhatareAbstractSyntaxtrees?
Defineaddressdescriptor andregisterdescriptor
Discussaboutcommon subexpression elimination
Whatis aFlow graph?
Defineconstantfolding?
Definereductioninstrength?

169

LONGQUESTIONS:

Explaintheissueandthe differencebetweentheheap allocatedactivationrecordsversus stack
allocatedactivation records
Writethe principalsources of optimization
Discussabout the following:
a) CopyPropagation
b) DeadcodeElimination
c) Codemotion.
ExplainLazy-codemotionproblemwithanalgorithm
Explainthe followingwith an example:
a) Redundantsub expression elimination
b) Frequencyreduction
c) Copypropagation
Explainvariousmethod tohandlepeepholeoptimization.
Explain thefollowingpeephole optimizationtechniques:
a) EliminationofRedundantCode
b) EliminationofUnreachableCode

Illustrateloopoptimizationwithsuitableexample.

Explainvarious codeoptimization techniques in detail.

Whataretheinduction variables?
Explain about code motion.
Whatareinductionvariables?Whatisinductionvariableelimination?
Whatismachine independentcode optimization?
Writeashort note on copyPropagation
Whataretheinduction variables?
Writeashort note on Flowgraph.

Explaindata-flowschemason basicblocks withflow graphs

ExplainLazy-codemotionproblemwithanalgorithm

Explaininbriefabout different Principalsourcesof optimizationtechniqueswith suitable
examples.

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM1

GiveanexampletoshowhowDAGisused forregisterallocation

Explainindetailaboutmachinedependent codeoptimizationtechniqueswiththeir drawbacks
Explainin briefabouttheissues in thedesign ofcodegenerator.

Explainindetailaboutpeephole optimization.

Explainmachinedependent andmachineindependent optimization?

Explaindata-flowanalysisofstructuralprograms.

Explainindetailtheprocedurethateliminates globalcommonsub expression

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM2

Tutorial problems with blooms mapping

In the context Automata Theory and compiler design , Bloom's Taxonomy can be a useful framework for
structuring problem-solving and learning outcomes. Bloom's Taxonomy categorizes learning objectives
into levels of complexity: Remember, Understand, Apply, Analyze, Evaluate, and Create. I'll present a
few tutorial problems that correspond to different levels of Bloom's Taxonomy.

1. Remember (Knowledge):

 Problem 1:
Define the following terms:
a. Alphabet
b. String
c. Language
d. Finite Automaton
e. Regular Expression

 Solution:
Provide definitions for each term, with examples if needed.

o Alphabet: A finite set of symbols, e.g., Σ = {0, 1}.
o String: A finite sequence of symbols from an alphabet, e.g., "101".
o Language: A set of strings over an alphabet, e.g., L = { "0", "1", "01", "10" }.
o Finite Automaton: A machine with a finite set of states used to recognize regular

languages.
o Regular Expression: A formal notation for defining regular languages.

2. Understand (Comprehension):

 Problem 2:
Explain why the set of strings consisting of an even number of 0s and an odd number of 1s is not
regular. Use the pumping lemma to justify your answer.

Solution:

 Solution:
This problem requires an understanding of the pumping lemma. You would show that the string
"000111" cannot be pumped without breaking the conditions of having an even number of 0s and
an odd number of 1s. Pumping a portion of the string could lead to an imbalance in the numbers of
0s and 1s. Thus, the language is not regular.

3. Apply (Application):

 Problem 3:
Construct a Deterministic Finite Automaton (DFA) that accepts the language of strings over {0, 1}
where the string contains at least one '1'.

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM3

Solution:

o The DFA should have two states:
 q0 (initial state): If a '0' is read, the machine stays in state q0; if a '1' is read, the

machine transitions to state q1.
 q1 (accepting state): Once in state q1, the machine stays in q1, Once in state q1,

the machine stays in q1, accepting any further input.

State transitions:

 q0 → on input '0' → q0
 q0 → on input '1' → q1
 q1 → on input '0' → q1
 q1 → on input '1' → q1

Acceptance condition: The string is accepted if the machine ends in state q1.

4. Analyze (Analysis):

 Problem 4:
Given the context-free grammar:

 Analyze the language generated by this grammar. What kind of strings does it accept?

Solution:
The grammar generates strings that consist of an equal number of 'a's followed by an equal
number of 'b's, with no other characters. The analysis of the grammar reveals that the language is
of the form { a^n b^n | n ≥ 0 }. This is a classic example of a context-free language.

5. Evaluate (Evaluation):

 Problem 5:
Evaluate whether the following language is context-free or not:

Solution:
This language is not context-free. The intuition comes from the fact that a context-free
grammar cannot ensure that two arbitrary halves of a string are identical. The pumping lemma
for context-free languages can be used to formally prove that this language cannot be context-
free.

6. Create (Synthesis):

 Problem 6:
Create a pushdown automaton (PDA) for the language L = { w ∈ {a, b}* | the number of 'a's is
equal to the number of 'b's }.

Solution:
To create a PDA for this language, one would design a machine that pushes symbols onto a stack

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM4

when it reads 'a' and pops symbols when it reads 'b', ensuring that the number of 'a's and 'b's are
equal. The PDA would need to handle the following transitions:

o On reading 'a', push 'A' onto the stack.
o On reading 'b', pop an 'A' from the stack.
o Accept if the stack is empty after reading the entire input string.

Transitions:

o (q0, a, ε) → (q0, A)
o (q0, b, A) → (q0, ε)
o (q0, ε, ε) → (q_accept, ε) (if the stack is empty)

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM5

Assignment questions with blooms mapping

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM6

List of students

1 23C31A6601 ADAPA RAKESH

2 23C31A6602 AITHA PRAVEEN

3 23C31A6603 AKARAPU ARPAN

4 23C31A6604 AMREEN

5 23C31A6605 ARURI PAVAN

6 23C31A6606 ARUTLA AJAY

7 23C31A6607 ATLA SAIKRISHNA

8 23C31A6608 BAIRABOINA PREETHI

9 23C31A6609 BAJJURI SANTHOSH

10 23C31A6610 BALABAKTHULAMANISHA

11 23C31A6611 BATTHULA DEEPIKA

12 23C31A6612 BEERUM LAXMI SRINIVAS

13 23C31A6613 BOINI AJAY

14 23C31A6614 BOLLENA VARSHA

15 23C31A6615 BOMMANAPELLY POOJITHA

16 23C31A6616 BURA SANJAY

17 23C31A6617 CHINNALA ARJUN

18 23C31A6618 CHINNAPALLY ASHWITHA

19 23C31A6619 CHINTHIREDDY PRAVEEN

20 23C31A6620 DARAVATH JASHWANTH

21 23C31A6621 DASARI LAHARI SRI

22 23C31A6622 DASARI SRINIVAS

23 23C31A6623 DASU SAIPRIYA

24 23C31A6624 DOLI ARCHANA

25 23C31A6625 DUDDE NITHISH

26 23C31A6626 DUPPATI PRANEETH

27 23C31A6627 EGA SHIVANI

28 23C31A6628 ELDI KARTHIK

29 23C31A6629 ENUGALA BHAVANI

30 23C31A6630 GAJJALA VARUN

31 23C31A6631 GANDHAM KARTHIK

32 23C31A6632 GANGINENI NAVEEN KUMAR

33 23C31A6633 GANJI KAVYA SHRI

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM7

34 23C31A6634 GOLI LAXMI PRASANNA

35 23C31A6635 GUJJULA RAMYA

36 23C31A6636 GUNDAMALA ARUN

37 23C31A6637 GUNISHETTI GANGOTHRI

38 23C31A6638 INDLA SANDHYA

39 23C31A6639 INTSHAR ALAM

40 23C31A6640 IPPA RITHWIK

42 23C31A6642 KANDUKURI JAYALAXMI

43 23C31A6643 KANKALA SUSHMITHA

44 23C31A6644 KANNAM SHIVA SAI

45 23C31A6645 KARRA SAHITHI REDDY

46 23C31A6646 KASANABOINA BHASKAR

47 23C31A6647 KATLA ARUN KUMAR

48 23C31A6648 KEESARI SRIRAM

49 23C31A6649 KOLA SIDDHARTHA

50 23C31A6650 KONTAM DIVYA

51 23C31A6651 KOTHA DIVYA

52 23C31A6652 KOTTURI CHAITHANYA

53 23C31A6653 KUCHANA SRAVANI

54 23C31A6654 LAKKA VARUN RAJ

55 23C31A6655 LEKKALA VARAPRASAD

57 24C35A6602 JADALA SHIVA KUMAR

58 24C35A6603 KUCHANA SANDEEP

59 24C35A6604 LAKKARSU SUNNY

60 24C35A6605 MOHAMMAD ARIF AHMED
61 24C35A6606 NARUGULA SAI CHANDANA

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM8

Scheme and evaluation of internal tests

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM9

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM10

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM11

Marks sheet

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM12

AUTOMATA THEORY AND COMPILER DESIGN IIB.TECH-IISEM13

References, Journals, websites and E-links if any

TEXT BOOKS:

1. Introduction to Automata Theory, Languages, andComputation,

3ndEdition, JohnE. Hop croft, Rajeev Motwani, Jeffrey D. Ullman,

Pearson Education.

2. Theory of Computer Science– Automata languages and

computation, Mishra and Chandrashekaran, 2nd edition, PHI.

REFERENCEBOOKS:

1. Introduction to Languages and The Theory of Computation, John.C Martin,TMH.

2. Introduction to Computer Theory, DanielI.A.Cohen, JohnWiley.

3. A Text book on Automata Theory, P.K.Srimani, Nasir S.F.B, Cambridge University Press.

4. Introduction to the Theory of Computation, Michael Sipser, 3rdedition, Cengage Learning.

5. Introduction to Formal languages Automata Theory and

computation Kamala Krithivasan, Rama R, Pearson.

	DEPARTMENT OF COMPUTER ENGINEERING (SE)
	Course File Contents:
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI

	DEPARTMENT VISION AND MISSION
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI
	ROGRAMME OUTCOMES (POs)

	Course Objectives
	Mapping of course outcomes with program outcomes:
	PROGRAM SPECIFICOUTCOMES (PSOs):

	1. Chalk and Talk (Traditional Method)
	2. PowerPoint Presentations (PPTs)
	3. NPTEL (National Programme on Technology Enhance
	4. Innovative Teaching Methods
	5. Flipped Classroom
	6. Interactive Online Learning Platforms
	7. Project-Based Learning
	8. Collaborative Learning (Peer Learning)
	9. Use of Animation/Visualization Tools
	10. Incorporating Coding
	UNIT-IV
	INTRODUCTION TO LANGUAGE ROCESSING:
	LANGUAGETRANSLATORS:

	LANGUAGE PROCESSING SYSTEM:
	PHASES OF A COMPILER:
	PHASE,PASSESOFACOMPILER:
	THEFRONT-END& BACK-ENDOFACOMPILER

	LEXICALA NALYSIS:
	TOKENS,PATTERN SAND LEXEMES:

	INPUTBUFFERING:
	SPECIFICATIONOF TOKENS:

	SYNTAX ANALYSIS(PARSER)
	THEROLEOFTHE PARSER:

	RUNTIMESTORAGE MANAGEMENT:
	REPRESENTINGSCOPE INFORMATION
	LOCALSYMBOLTABLEMANAGEMENT :
	1. Remember (Knowledge):
	2. Understand (Comprehension):
	3. Apply (Application):
	4. Analyze (Analysis):
	5. Evaluate (Evaluation):
	6. Create (Synthesis):

